
Apiary: Software Tools for Beehive v2

Thomas L. Rodeheffer
Microsoft Research, Silicon Valley

December 16, 2009



Contents

1 Introduction 1
1.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 File types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Getting the tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 C Compiler - Bgcc1 4
2.1 Making a bootable image . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Compiling C to assembler . . . . . . . . . . . . . . . . . . . 4
2.1.2 Assembling . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Making a bootable image . . . . . . . . . . . . . . . . . . . . 7

2.2 Startup code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Assembler - Bas 8
3.1 Running Bas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Source format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Identifiers, numbers, and strings . . . . . . . . . . . . . . . . . . .. 9
3.5 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.6 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.7 Values and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.8 Label definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.9 Equate definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.10 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.10.1 Basic functions . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.10.2 Basic function with address queue pushes . . . . . . . . . .. 13
3.10.3 Basic function with shifts . . . . . . . . . . . . . . . . . . . 13
3.10.4 Basic function with jumps . . . . . . . . . . . . . . . . . . . 14
3.10.5 Class 1 jump instructions . . . . . . . . . . . . . . . . . . . . 14
3.10.6 Synthesized loads . . . . . . . . . . . . . . . . . . . . . . . . 15
3.10.7 Synthesized jumps . . . . . . . . . . . . . . . . . . . . . . . 16
3.10.8 Load link immediate . . . . . . . . . . . . . . . . . . . . . . 17
3.10.9 Synthesized long loads . . . . . . . . . . . . . . . . . . . . . 17
3.10.10 Synthesized long jumps . . . . . . . . . . . . . . . . . . . . 17

i



3.10.11 Simulator control . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11 Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.11.1 Segment selection directives . . . . . . . . . . . . . . . . . . 19
3.11.2 Advance current location directives . . . . . . . . . . . . .. 20
3.11.3 Align current location directives . . . . . . . . . . . . . . .. 20
3.11.4 Emit words or bytes directives . . . . . . . . . . . . . . . . . 20
3.11.5 Emit string directives . . . . . . . . . . . . . . . . . . . . . . 21
3.11.6 Region nesting directives . . . . . . . . . . . . . . . . . . . . 21
3.11.7 Assume register directives . . . . . . . . . . . . . . . . . . . 22
3.11.8 Global symbol directive . . . . . . . . . . . . . . . . . . . . 22
3.11.9 Local symbol directive . . . . . . . . . . . . . . . . . . . . . 22
3.11.10 Common request directive . . . . . . . . . . . . . . . . . . . 23
3.11.11 Include directive . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11.12 Commentary directives . . . . . . . . . . . . . . . . . . . . . 23

3.12 Predefined symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Utilities 25
4.1 Archiver - Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Loader - Bld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Image maker - Bimg . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Virtex mem file maker - Bvmem . . . . . . . . . . . . . . . . . . . . 28
4.5 File of bytes processor - Bfiledata . . . . . . . . . . . . . . . . . . .28

5 Simulator - Bsim 30
5.1 Running Bsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Cache preload requests . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Physical memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Simulated coprocessors . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Simulator controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6 Interactive debugger . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Beehive architecture 34
A.1 ALU function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.1.1 ALU argument A . . . . . . . . . . . . . . . . . . . . . . . . 34
A.1.2 ALU argument B . . . . . . . . . . . . . . . . . . . . . . . . 35

A.2 Major Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.3 Condition codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
A.4 Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.5 Special function units . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.5.1 Debug unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.6 Memory controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.6.1 Address queue value . . . . . . . . . . . . . . . . . . . . . . 39
A.6.2 ASLI interface . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.6.3 Data cache controller . . . . . . . . . . . . . . . . . . . . . . 41
A.6.4 Inter-core message controller . . . . . . . . . . . . . . . . . . 41
A.6.5 Lock controller . . . . . . . . . . . . . . . . . . . . . . . . . 42

ii



A.7 Instruction fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B Object file format 44
B.1 Archive element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.2 Object element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
B.3 Segment element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.4 Word element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.5 Zero element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B.6 Patch element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.7 Expression patch element . . . . . . . . . . . . . . . . . . . . . . . . 46
B.8 Extrn element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.9 Globl element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.10 Local element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.11 Comm element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

C Software conventions 49
C.1 Register usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.2 Memory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
C.3 C subroutine linkage . . . . . . . . . . . . . . . . . . . . . . . . . . 52

C.3.1 Return value . . . . . . . . . . . . . . . . . . . . . . . . . . 52
C.3.2 Layout of the parameter block . . . . . . . . . . . . . . . . . 53
C.3.3 Integral number of words . . . . . . . . . . . . . . . . . . . . 54
C.3.4 Passing the parameter block . . . . . . . . . . . . . . . . . . 54
C.3.5 Calling the subroutine . . . . . . . . . . . . . . . . . . . . . 55
C.3.6 Subroutine entry . . . . . . . . . . . . . . . . . . . . . . . . 55
C.3.7 Subroutine return . . . . . . . . . . . . . . . . . . . . . . . . 56

C.4 Instruction schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
C.4.1 Fetching from memory . . . . . . . . . . . . . . . . . . . . . 57
C.4.2 Storing into memory . . . . . . . . . . . . . . . . . . . . . . 58
C.4.3 General schema . . . . . . . . . . . . . . . . . . . . . . . . . 58

iii



Chapter 1

Introduction

The Beehive software tools are a collection of programs to assist in software develop-
ment for Beehive. Available tools include a C compiler, relocating assembler, loader,
image maker, and simulator.

1.1 Tools

The available software tools are described briefly as follows:

Bgcc1 The Beehive C compiler. This is a port of the GNU C compiler version 4.3.3.
Chapter 2 describes how to use the C compiler.

Bas The Beehive relocating assembler. Chapter 3 describes the assembler in detail.

Bar The Beehive archiver, which gathers a collection of relocatable object files into a
library archive. Section 4.1 describes how to use the archiver.

Bld The Beehive loader, which loads a collection of relocatableobject files into an
executable object file, binding external references. Section 4.2 describes how to
use the loader.

Bimg The Beehive image maker, which constructs a binary memory image of an exe-
cutable object file. Section 4.3 describes how to use the image maker.

BvmemThe Beehive Virtex mem file maker, which constructs code and data Virtex
mem files from an executable object file. Section 4.4 describes how to use the
Virtex mem file maker.

Bsim The Beehive simulator, which simulates the execution of an executable object
file. Chapter 5 describes how to use the simulator.

Bsimimg A version of the Beehive simulator that takes its input from abinary mem-
ory image.

1



Bfiledata A utility that converts a file of bytes into a C source file that initializes
a global to an array of those bytes. Section 4.5 describe how to use the file data
utility.

1.2 File types

The various file types on which the tools operate are distinguished by convention using
standard extensions. The standard extensions and file typesare as follows:

.c A source file written in C.

.h A header (include) file for a C program.

.as A source file written in assembly language.

.s An intermediate assembler source file produced by compilinga C source file.

.o A relocatable object file produced by assembling an assembler source file. For
convenience in tool development, a relocatable object file is an XML text file.
The format of this file is described in Appendix B.

.a An archive of relocatable object files produced by the archiver. An archive file is
treated as a library by the loader, which loads as many relocatable object files
from it as are needed to satisfy unbound external references. For convenience in
tool development, an archive file is an XML text file. The format of this file is
described in Appendix B.

.out An executable object file. An executable object file is produced by the loader
from a collection of relocatable object files and archives. Technically, an exe-
cutable object file is identical in format to a relocatable object file. However,
the expectation is that the executatble object file will haveno unbound external
references. The start address is the value of the symbol “main”.

.img An executable image file. An executable image file is producedby the image
maker from an executable object file and it consists of a binary memory image
starting at some specified word index in memory. The program is expected to
start execution at the first word in the image.

.mem A Virtex mem file. A Virtex mem file is produced by the Virtex memfile maker
from an executable object file. The program is expected to start execution at code
address 0.

.lst A listing file. The assembler produces a listing file as one of its outputs during
assembly. The listing file is in text format and is meant for human consumption.

.map A map file. The loader produces a map file as one of its outputs during assembly.
The map file is in text format and is meant for human consumption.

The following chapters describe these tools and file types indetail.

2



1.3 Getting the tools

The Beehive software tools can be obtained from

\\msr-svc\files\users\tomr\Beehive\apiary-distv2.ta r

Make a directory that you will use as the root directory for Beehive software tools.
There is no required name for the directory but henceforth wewill call it APIARY.
It would be a good idea to define an environment variable APIARY that contains the
name of the root directory. (In the future this may become mandatory.)

Unzipping the Beehive software tools file into APIARY reveals the following di-
rectory structure:

APIARY/bin Tool executables and dlls.

APIARY/include Include files.

APIARY/lib Library files.

APIARY/src/lib Source files used to build the library files.

APIARY/src/hello Source files of a simple C program.

In order to execute the Beehive software tools, you have to add APIARY/bin to your
PATH environment variable.

3



Chapter 2

C Compiler - Bgcc1

Bgcc1 is a port of the GCC compiler version 4.3.3 to the Beehive. Appendix C de-
scribes the software conventions used by Bgcc1 in its employment of the Beehive ar-
chitecture.

2.1 Making a bootable image

Converting a C program into a bootable image file takes four steps.

1. Compiling the C source code to assembler.

2. Assembling the assembler source code to a relocatable object file.

3. Loading the relocatable object file with startup code and libraries to produce an
executable object file.

4. Converting the executable object file to a bootable image file.

Starting with a C source filesource.c, the recommended commands for performing
these four steps are as follows, whereAPIARYstands for the name of the Apiary root
directory:

Bgcc1 -quiet -std=c99 -fno-builtin -O2 -IAPIARY/includesource.c
Bas -x -datarota=2source.s
Bld -o source.out-codebase=1000 -datafloatAPIARY/lib/base.osource.o-LAPIARY/lib -lc -lgcc
Bimg source.out

Next these steps are described in more detail.

2.1.1 Compiling C to assembler

Bgcc1 compiles a C source file to assembler code. Bgcc1 is invoked using the com-
mand line

4



Bgcc1 [options] source.c

One source file is expected. The C source codesource.cis compiled to the assembler
source filesource.susing the same base file name but replacing the.c extension with
.s

Options start with a hypen (- ). GCC supports a hideously enormous number of
options. For a listing, use the command

Bgcc1 --help

or refer to GCC documentation such ashttp://gcc.gnu.org/onlinedocs/
gcc/ . Note that some of the documented options pertain to the so-called gcc driver
and not to the compiler proper, which is what Bgcc1 is.

The recommended command line to compile an example C source file source.cto
the assembler filesource.sis as follows:

Bgcc1 -quiet -std=c99 -fno-builtin -O2 -IAPIARY/includesource.c

The arguments are interpreted as follows:

-quiet Cause the compiler not to print lots of generally uninteresting compilation
statistics.

-std=c99 Declare that we want the c99 standard dialect of C. Without this, you get an
older dialect that prohibits declaring variables other than at the start of blocks,
which is painful.

-fno-builtin Tell the compiler not to think it understands what printf andfriends do.

-O2 Ask for optimization level 2. At this level, you get nice dataflow analysis and
register allocation.

-IAPIARY/include Add the standard Apiary include directory to the search path. API-
ARYis the Apiary root installation directory (see Section 1.3), preferably stored
in the APIARY environment variable.

source.c This is the C source file.

2.1.2 Assembling

The assembly source code produced by Bgcc1 has several properties that affect how it
must be assembled. (1) Bgcc1 uses symbol names for external references without ever
defining them. (2) Bgcc1 assumes that the data segment is byte-addressed.

The recommended command line to assemble the compiler-generated assembler
source filesource.sto the relocatable object filesource.ois as follows:

Bas -x -datarota=2source.s

The arguments are interpreted as follows:

-x Cause the assembler to treat each undefined symbol as an external reference.

-datarota=2 Specify that the data segment is byte-addressed.

source.sThis is the assembler source file.

5



2.1.3 Loading

Converting the relocatable object file into an executable object file requires supplying
startup code and various libraries. The startup code prepares the C environment and is
described in Section 2.2.

The librarylibc.a is a basic C library containing malloc, some string routines, and
simple input and output including printf. It also includes some beehive-specific support
routines described in Appendix??.

The library libgcc.a contains compiler runtime support routines for arithmetic,
shifting, and for fetching and storing bytes and shorts. This library must always ap-
pear last.

Assuming that the intent is eventually to produce a binary memory image that can
be loaded by the level 1 Beehive boot loader, the requirements of this boot loader must
also be kept in view. These requirements are as follows. (1) The binary memory image
must be a continuous sequence of words starting at memory word index 0x1000. (2)
The program must start execution at memory word index 0x1000. These requirements
can be satisfied by supplying the proper arguments to Bld.

The recommended command line to load the compiler-generated and assembled
relocatable object filesource.oto produce the executable object filesource.outis as
follows:

Bld -o source.out-codebase=1000 -datafloatAPIARY/lib/base.osource.o-LAPIARY/lib -lc -lgcc

The arguments are interpreted as follows:

-o source.out Specify that the output file issource.out

-codebase=1000Specify that the code segment will be relocated to start at memory
word index 0x1000. This is the required base load address forthe level 1 Beehive
boot loader.

-datafloat Specify that the data segment will be relocated to start after the end of the
code segment.

APIARY/lib/base.o Cause the loader to start off by loading the startup code which is
found in the library module base.o.APIARYis the Apiary root installation direc-
tory (see Section 1.3), preferably stored in the APIARY environment variable.

source.o Cause the loader to continue by loading the relocatable object code compiled
and assembled from source.c. Additional relocatable object files may be listed at
this point.

-LAPIARY/lib Cause the loader to add the directoryAPIARY/lib to the library search
path.

-lc Cause the loader to find the library archive libc.a on the library search path and
load all relocatable object files needed to satisfy externalreferences.

-lgcc Cause the loader to find the library archive libgcc.a on the library search path
and load all relocatable object files needed to satisfy external references.

6



2.1.4 Making a bootable image

Assuming that the executable object file was loaded with the proper arrangement to
become a bootable image file, the actual bootable image file isproduced by Bimg. The
recommended command line is as follows:

Bimg source.out

The arguments are interpreted as follows:

source.out This is the executable object file.

The resulting bootable image file issource.img

2.2 Startup code

The startup code prepares the C execution environment. It contains the executable
entry pointmain and has the responsibilities of (1) initializing the assumezero register
zero , (2) initializing the stack pointer registersp , and then (3) calling the C language
main subroutinemain with no parameters. Software register usage is described in
Section C.1.

Since many arrangements for booting programs require that the program start exe-
cution at the first word loaded, it is also convenient for the startup code to be loaded first
so that the executable entry pointmain occurs in the correct place. Such an arrange-
ment permits the C language main subroutine to appear anywhere in memory, Note
that C language global symbol names are prefixed with an underscore () in assembly
code. Thus the C language main subroutine can be distinguished from the executable
start address.

The recommended startup code modulebase.o sets up a small stack which should
suffice for simple programs. However, an alternate startup module may be provided.
The Apiary library includes the following startup code object files:

APIARY/lib/base.o Includes a 200 word stack in the data segment.

APIARY/lib/basehs.o Initializes the stack pointer to0xfffffffc , which is the high-
est word address in data memory.

APIARY/lib/basemc.o Multicore startup code. Includes an array of 16 stacks in the
data segment, each 256 words long and aligned on a cache line boundary. Ini-
tializes the stack pointer to the top of the stack corresponding to the current core.
Note that since global variables are in general not aligned on cache line bound-
aries they are problematic to use in multicore programming,since flushing one
variable may overwrite others with stale data.

7



Chapter 3

Assembler - Bas

Bas is a relocating assembler for Beehive [1] version 2. The instruction set is sum-
marized in Appendix A. Bas reads one or more assembler sourcefiles and writes a
relocatable object file and, if requested, a listing file. Theformat of the object file is
described in Appendix B.

3.1 Running Bas

Bas is invoked using the command line

Bas [options] sourcea.s sourceb.s ...

Options start with a hypen (- ). The following options are supported:

-o out Useout as the file name for the relocatable output file. Note there is aspace
between -o andout. The default is to use name of the first input file with its
extension replaced with.o

-lst lst Use lst as the file name for the listing file. Note there is a space between -lst
andlst. The default is to omit the listing file.

-x Automatically define all otherwise undefined symbols as external references to
global symbols.

-Idir Add the directorydir to the list of directories searched for include files. Note
there is no space between -I anddir.

-codebase=nSet the base of the default code segment.text to word indexn, where
n is a hexadecimal number. The default is 0. Note that this is a word index, so it
is unaffected by address rotation. The loader typically changes the base during
relocation, so the base given to Bas really only has significance for the listing
file.

-database=nSet the base of the default data segment.data to word indexn, where
n is a hexadecimal number. The default is 0. Note that this is a word index, so it

8



is unaffected by address rotation. The loader typically changes the base during
relocation, so the base given to Bas really only has significance for the listing
file.

-coderota=n Set the rotation of code addresses ton, wheren is a hexadecimal num-
ber. The default is 0, which produces a word-addressed architecture for code
addresses. The code address rotation controls how current location advances in
all code segments.

-datarota=n Set the rotation of data segment addresses ton, wheren is a hexadecimal
number. The default is 0, which produces a word-addressed architecture for data
addresses. The data address rotation controls how the current location advances
in all data segments and in the absolute segment.

Although any extension may be used for the assembler source files, the extension.as
is recommended for user-written source files. Multiple source files are concatenated to
form a single input source program. The following extensions are recommended for
the output files:

.lst the listing file

.o the object file

3.2 Source format

The assembler source files consist of comments, label definitions, symbol definitions,
instructions, and directives. Generally each source line contains zero or more label
definitions and, optionally, an equate definition or an assembler statement. However,
multiple logical lines can be placed on the same physical line by separating them with
semicolons.

3.3 Comments

An end-of-line comment starts with// and goes up to the end of the line. A multiline
comment starts with/ * and ends with a matching* / and may be nested. Comments
are treated as white space.

// this is an end-of-line comment

/ * this is a multiline comment
/ * which may be nested * / * /

3.4 Identifiers, numbers, and strings

A word is a non-empty sequence of alphabetic characters, digits, “.”, and “ ”. An
identifier is a word that does not start with a digit. An identifier that starts with “.” is
special as explained later. A number is a word that starts with a digit. As in C, if the
number starts with “0x” it is interpreted in hexadecimal, otherwise if it starts with “0”
it is interpreted in octal, otherwise it is interpreted in decimal.

9



+ positive
- negative
˜ bit complement
$ register number

Table 3.1: Prefix operators

+ addition
- subtraction
| bit or
& bit and
ˆ bit xor
* multiplication
/ unsigned division
% unsigned remainder
RORrotate right
ROL rotate left
LSR logical shift right
LSL logical shift left
ASR arithmetic shift right
ASL arithmetic shift left (same as LSL)

Table 3.2: Infix operators

A string is enclosed in double quotes (" ) and has the usual escapes using backslash
(\ ) as in C. A string can span multiple lines. Escaping the newline prevents the newline
from being part of the string. A string of up to four characters can be used as a con-
stant in an expression. The first character defines the low order eight bits, the second
character (if any) the next eight bits, and so on, with any leftover bits being defined as
zero.

3.5 Expressions

Words can be combined into expressions using parenthesis, prefix operators, and infix
operators. Prefix operators have precedence over infix operators. For simplicity, all
infix operators have the same precedence and associate to theleft. Table 3.1 shows the
prefix operators and Table 3.2 the infix operators. Note that the infix operators ROR,
ROL, and so on are reserved words in the grammar. Although theinfix operator ASL
is provided for completeness, it is the same as LSL.

As explained in Section 3.7, expressions compute values andvalues have types. In
most cases the arguments of operators must be absolute numbers.

10



3.6 Registers

Ordinary registers are specified via register numbers usingthe dollar sign ($) prefix
operator. The ordinary registers are$0, $1, $2, etc. You can also write expressions
such as$(3+4) but this is probably not very useful. An identifier may be defined as an
ordinary register.

Special registers are specified via the following predefinedidentifiers:

pc the program counter register, read via Ra overload 31
link the link register, read via Ra overload 30
rq the read queue register, read via Ra overload 29
wq the write queue register, written via Rw overload 31

Bas ensures that ordinary registers and special registers are used only in their proper
places. For example, Bas checks that$31 is not specified for Ra, which would not work
because of Ra overloading.

3.7 Values and types

Expressions compute values and values have types.
The simplest type is anabsolute numbersuch as 0, 1, 2, etc. Strings that are used as

constants in an expression are also considered to be absolute numbers. Absolute num-
bers can be combined in an expression using any of the arithmetic and bit operators.

Another type is aregister number. A register number is obtained by applying the
prefix register number operator ($) to an absolute number. Each of the special registers
is also its own type. Register numbers and special registerscannot be further combined
in an expression.

A relocatable offsetis another class of types. Examples of these types are offsets
in a segment and offsets from an external reference to a global symbol. Each different
basis of relocation gives rise to a unique type. So, for example, offsets in one code
segment are one type, offsets in another code segment are a second type, offsets in a
data segment are a third type, and offsets from a particular external symbol are yet a
fourth type. Two relocatable offsets can be subtracted fromone another, producing an
absolute number, provided that the offsets are of the same type. An absolute number
can be added or subtracted from a relocatable offset with theobvious result.

The final type is theexprpatch. An exprpatch is a symbolic expression tree in
which the leaves are absolute numbers and relocatable offsets and the operators are
addition, subtraction, bitwise inclusive or, bitwise clear, and rotation. The exprpatch is
the general type that is handled by the relocating loader. Observe that absolute numbers
and relocatable offsets can be promoted trivially into exprpatches.

Bas constructs an exprpatch as its internal representationof how to convey informa-
tion from “long ld” and similar instructions to the loader. Another operator available
in the exprpatch is “mbz”, which is a loader-checked assertion that certain bits in a
symbolic value must be zero. Bas uses the mbz operation to convey information from
the “x lli” instruction to the loader.

11



Unfortunately, Bas currently does not permit the user to construct an exprpatch as
the result of an expression. This deficiency will be fixed whentime permits.

3.8 Label definitions

A label definition consists of an identifier followed by a colon:

identifier: // a label definition

The identifier is assigned the address of the current location. Note that the current
location can be a relocatable offset in a segment or an absolute value.

Multiple label definitions may appear at the start of a line. Any given identifier can
be defined at most once.

3.9 Equate definitions

An equate definition consists of an identifier followed by an equals sign (=) followed
by an expression followed by the end of the line. Any identifiers used in the expression
must be defined earlier in the input source.

identifier = expression // an equate definition

The identifier is assigned the value of the expression. Note that values come in various
types. A value can be an absolute number, a relocatable offset, a register number, or
one of the special registers.

3.10 Instructions

An instruction consists of an opcode followed by a comma-separated list of arguments:

opcode arg,arg,arg,. . .

Each argument is an expression. The opcode defines a semanticoperation with a given
number of arguments that is to be assembled into a certain number of machine in-
structions. Most opcodes assemble into one instruction buta few assemble into two
instructions. The assembled instructions are emitted intothe current segment.

Although lexically an opcode is an identifier, it is not in thesame namespace as
predefined and user defined identifiers. Opcodes are not reserved words. The various
classes of instructions are described next.

3.10.1 Basic functions

The Beehive CPU supports eight basic arithmetic and logicalfunctions which are spec-
ified via opcodes as follows:

12



add w,a,b // w = a+ b
sub w,a,b // w = a- b
or w,a,b // w = a| b
orn w,a,b // w = a| ˜ b
and w,a,b // w = a& b
andn w,a,b // w = a& ˜ b
xor w,a,b // w = â b
xorn w,a,b // w = â ˜ b

Each of the arguments is an expression that specifies a value as follows:

w a register number or a special registerwq or link .
a a register number or a special registerpc, link , or rq .
b a register number or an absolute number0..0xfff .

The instruction assembles into a machine instruction usingthe NOSHIFT op in order
to permit the widest range of constants.

3.10.2 Basic function with address queue pushes

The Beehive CPU has machine instructions that push the result of any of the eight basic
functions onto the address queue in addition to writing it tothe destination register.
These machine instructions are specified by opcode familiesderived from each of the
basic function opcodes. For simplicity, we show only the opcode family for “add”.
Analogous families exist for each of the other basic functions.

aqr add w,a,b // aqr= w = a + b (memory read)
aqw add w,a,b // aqw= w = a+ b (memory write)

Each of the arguments is an expression that specifies a value as follows:

w a register number or a special registerwq or link .
a a register number or a special registerpc, link , or rq .
b a register number or an absolute number0..0xfff .

3.10.3 Basic function with shifts

The Beehive CPU has machine instructions that apply an arbitrary shift of any of five
types to the result of any of the eight basic functions. Thesemachine instructions are
specified by opcode families derived from each of the basic function opcodes. For
simplicity, we show only the opcode family for “add”. Analogous families exist for
each of the other basic functions.

add ror w,a,b,s // w= (a+ b) rotate right s
add rol w,a,b,s // w= (a+ b) rotate left s
add lsr w,a,b,s // w= (a+ b) logical shift right s
add lsl w,a,b,s // w= (a+ b) logical shift left s
add asr w,a,b,s // w= (a+ b) arithmetic shift right s

Each of the arguments is an expression that specifies a value as follows:

13



w a register number or a special registerwq or link .
a a register number or a special registerpc, link , or rq .
b a register number or an absolute number0..0x7f .
s an absolute number 0..31.

Note that the permissible range of absolute numbers in argument b is reduced consid-
erably because of the necessity to specify a shift count.

The Beehive CPU version 2 omitsrotate leftsince it is redundant withrotate right.
Therefore Bas assemblesrotate lefts asrotate right32 − s.

3.10.4 Basic function with jumps

The Beehive CPU has machine instructions that conditionally jump to an address which
is the result of any of the eight basic functions. These machine instructions are specified
by opcode families derived from each of the basic function opcodes. For simplicity, we
show only the opcode family for “add”. Analogous families exist for each of the other
basic functions.

call add a,b // link = nextpc; goto (a+ b)
j add a,b // goto (a+ b)
jz add a,b // if (ZERO) goto (a+ b)
jm add a,b // if (MINUS) goto (a+ b)
jc add a,b // if (CARRY) goto (a+ b)
jnz add a,b // if (!ZERO) goto (a+ b)
jnm add a,b // if (!MINUS) goto (a+ b)
jnc add a,b // if (!CARRY) goto (a+ b)
j0 add a,b // class 1 jump 0
j1 add a,b // class 1 jump 1
j2 add a,b // class 1 jump 2
j3 add a,b // class 1 jump 3
j4 add a,b // class 1 jump 4
j5 add a,b // class 1 jump 5
j6 add a,b // class 1 jump 6
j7 add a,b // class 1 jump 7

Each of the arguments is an expression that specifies a value as follows:

a a register number or a special registerpc, link , or rq .
b a register number or an absolute number0..0x1ffff .

3.10.5 Class 1 jump instructions

The Beehive CPU class 1 jump instructions are interpreted byspecial function units
and generally they do not actually jump, although they fetchALU operands in the
normal way, which may include pulling a word from the read queue. To assist in
specifying class 1 jump instructions that may have an unusual structure, Bas provides
special opcodes. The following opcodes put “w” into the low-order four bits of the Rw
field, and 0 into the Ra, Rb, Count, Const, and Fun fields:

14



j0w w // class 1 jump 0
j1w w // class 1 jump 1
j2w w // class 1 jump 2
j3w w // class 1 jump 3
j4w w // class 1 jump 4
j5w w // class 1 jump 5
j6w w // class 1 jump 6
j7w w // class 1 jump 7

Each of the arguments is an expression that specifies a value as follows:

w an absolute number0..15 .

The following opcodes put “x” into the Fun field and assemble “a” as ALU argument
a and “b” as ALU argument b:

j0x x,a,b // class 1 jump 0
j1x x,a,b // class 1 jump 1
j2x x,a,b // class 1 jump 2
j3x x,a,b // class 1 jump 3
j4x x,a,b // class 1 jump 4
j5x x,a,b // class 1 jump 5
j6x x,a,b // class 1 jump 6
j7x x,a,b // class 1 jump 7

Each of the arguments is an expression that specifies a value as follows:

x an absolute number0..7 .
a a register number or a special registerpc, link , or rq .
b a register number or an absolute number0..0x1ffff .

3.10.6 Synthesized loads

It may be observed that the Beehive CPU lacks instructions that load one register from
another or from a constant. However, in many cases the desired effect can be obtained
by employing a proper selection of ALU function and arguments. This is particularly
effective if some register can be assumed to contain a usefulvalue such as, for exam-
ple, zero. See the .assume directive for how to tell the assembler about an assumed
value. Bas provides the following synthesized load opcodesthat assemble into a single
machine instruction:

ld w,f // w = f
aqr ld w,f // aqr= w = f (memory read)
aqw ld w,f // aqw= w = f (memory write)
ror w,f,s // w= f rotate right s
rol w,f,s // w= f rotate left s
lsr w,f,s // w= f logical shift right s
lsl w,f,s // w= f logical shift left s
asr w,f,s // w= f arithmetic shift right s

15



Each of the arguments is an expression that specifies a value as follows:

w a register number or a special registerwq or link .
f a register number; a special registerpc, link , or rq ; the absolute numbers0 or

0xffffffff ; or any constant offset up to plus or minus0xfff (only 0x7f
in the case of the shift opcodes) from an assumed register value.

s an absolute number0..31 .

Note that specifying a register number of$29, $30, or $31 in argument f requires
having an assumed zero register in order to get around Ra overloads. Note that special
registerpc always has an assumed value.

The Beehive CPU version 2 omitsrotate leftsince it is redundant withrotate right.
Therefore Bas assemblesrotate lefts asrotate right32 − s.

3.10.7 Synthesized jumps

As in the case of synthesized loads, Bas provides the following synthesized jump op-
codes that assemble into a single machine instruction:

call f // link = nextpc; goto f
j f // goto f
jz f // if (ZERO) goto f
jm f // if (MINUS) goto f
jc f // if (CARRY) goto f
jnz f // if (!ZERO) goto f
jnm f // if (!MINUS) goto f
jnc f // if (!CARRY) goto f
j0 f // class 1 jump 0 alu=f
j1 f // class 1 jump 1 alu=f
j2 f // class 1 jump 2 alu=f
j3 f // class 1 jump 3 alu=f
j4 f // class 1 jump 4 alu=f
j5 f // class 1 jump 5 alu=f
j6 f // class 1 jump 6 alu=f
j7 f // class 1 jump 7 alu=f

The argument f is an expression that specifies a value as follows:

f a register number; a special registerpc, link , or rq ; the absolute numbers0 or
0xffffffff ; or any constant offset up to plus or minus0x1ffff from an
assumed register value.

Note that specifying a register number of$29, $30, or $31 in argument f requires
having an assumed zero register in order to get around Ra overloads. Note that special
registerpc always has an assumed value. This is particularly useful in the case of
synthesized jumps.

For the class 1 jumps, these instructions assemble to produce f as the output of the
ALU, just like a normal jump would do. This may or may not be what you want.

16



3.10.8 Load link immediate

The Beehive CPU has a “load link immediate” instruction thatloads thelink register
with any constant whose low order four bits are zero:

lli i // link = i
x lli x // link = x

The argument is an expression that specifies a value as follows:

i an absolute number whose low order four bits are zero.
x a relocatable offset. The loader will verify that the low order four bits are zero.

Thex lli instruction can be used to get the address of a table into thelink register
provided that the table is properly aligned in memory, for example by using an.align
16 directive.

3.10.9 Synthesized long loads

Any 32-bit value can be loaded into a register by using a “loadlink immediate” instruc-
tion to place the high order 28 bits in thelink register followed by an “or” instruction to
combine it with the low order 4 bits. Bas provides the following opcodes that assemble
to this sequence:

long ld w,k // w = k
aqr long ld w,k // aqr= w = k (memory read)
aqw long ld w,k // aqw= w = k (memory write)

Each of the arguments is an expression that specifies a value as follows:

w a register number or a special registerwq or link .
k any absolute number or relocatable offset.

3.10.10 Synthesized long jumps

Since the “load link immediate” instruction does not affectthe condition codes, it can
be used as a prefix to a conditional jump in order to jump conditionally to an arbi-
trary address. Bas provides the following synthesized longjumps that assemble into a
sequence of two machine instructions:

17



long call k // link = nextpc; goto k
long j k // goto k
long jz k // if (ZERO) goto k
long jm k // if (MINUS) goto k
long jc k // if (CARRY) goto k
long jnz k // if (!ZERO) goto k
long jnm k // if (!MINUS) goto k
long jnc k // if (!CARRY) goto k
long j0 k // class 1 jump 0 alu=k
long j1 k // class 1 jump 1 alu=k
long j2 k // class 1 jump 2 alu=k
long j3 k // class 1 jump 3 alu=k
long j4 k // class 1 jump 4 alu=k
long j5 k // class 1 jump 5 alu=k
long j6 k // class 1 jump 6 alu=k
long j7 k // class 1 jump 7 alu=k

The argument k is an expression that specifies a value as follows:

k any absolute number or relocatable offset.

For the class 1 jumps, these instructions assemble to produce k as the output of the
ALU, just like a normal jump would do. This may or may not be what you want.

3.10.11 Simulator control

Bas provides the following instruction as a run-time interface to the simulator:

simctrl s // simulator control s

The argument s is an expression that specifies a value as follows:

s an absolute number 0..31.

This instruction assembles as Rw=0, Ra=0, Rb=0, const=0, count=s, Fun=OR, Op=NOSHIFT.
Observe that in the Beehive CPU architecture this is equivalent to

or $ 0,$0,$0

because the count field is irrelevant in such an instruction.However, the simulator
notices this instruction and takes special actions based ons. See Section 5.5 for a
discussion of the simulator controls.

3.11 Directives

A directive consists of an opcode possibly followed by some arguments. Although
lexically an opcode is an identifier, it is not in the same namespace as predefined and
user defined identifiers. In order to make clear which opcodesare instructions and
which are directives, directive opcodes start with a period. The various directives are
described next.

18



3.11.1 Segment selection directives

Bas implements three kinds of segments: code, data, and absolute. Code segments are
intended to contain code and data segments are intended to contain data. An absolute
segment is intended to provide for the layout of data withoutdefining its contents.
Labels get the kind of the segment in which they are defined. There can be multiple
code segments and multiple data segments. There is only one absolute segment. The
code address rotation controls how the current location advances in code segments.
The data address rotation controls how the current locationadvances in data segments
and in the absolute segment. Assembled instructions and data words can be emitted
into code segments and data segments regardless of the kind of the segment. However,
nothing can be emitted into the absolute segment.

The general directive for changing the current segment is:

.section n,s // switch to segmentn characteristicss

.section n,s,b // switch to segmentn characteristicssoptionb

The arguments are as follows:

n an identifier that is the name of the new segment.
s a string that defines characteristics of the new segment.
b an identifier giving an additional option.

The strings is interpreted character-by-character and each characterspecifies a
characteristic as follows:

a all labels in this segment should be retained for debugging.
w segment is writable.
x segment is executable.
s segment is small.
S segment contains strings.
T segment is thread-local storage.

Characteristics other than “x” are ignored by Bas. Bas interprets characteristic “x” to
specify a code segment. The absence of “x” specifies a data segment.

The optional argumentb specifies options as follows:

@nobits the segment contains no initialized contents.
@progbits the segment may contain content.

The@nobits option is used, for example, to specify a.bss segment. The option is
ignored by Bas.

When changing the current segment, if the new named segment does not already
exist it is created. Otherwise, Bas merely switches to the existing segment and extends
it.

The following abbreviated directives can be used to change to the default code and
data segments:

.code // switch to default code segment.text

.data // switch to default data segment.data

.bss // switch to secondary data segment.bss

19



Finally, the following directive changes to the absolute segment:

.abs i // switch to absolute segment location i

The argument i is an expression that specifies a value as follows:

i any absolute number.

The absolute segment does not have a name. Although words cannot be emitted into
the absolute segment, its current location can be advanced.This makes it convenient to
define absolute labels in laying out a structure.

3.11.2 Advance current location directives

The following directive advances the current location within the current segment:

.blkw i // advance current location by i * step

.blkb i // advance current location by i bytes

The argument i is an expression that specifies a value as follows:

i any absolute number.

.blkw advances by a number of words and .blkb by a number of bytes.
The treatment of .blkb depends on the current segment’s step. If the step is 4,

implying a byte-addressed segment, .blkb advances the current location by i. If the
step is 1, implying a word-addressed segment, .blkb advances the current location by
(i + 3) / 4, which is the number of words it would take to store i bytes.

3.11.3 Align current location directives

The following directives advance the current location within the current segment, if
necessary, until it has a specified alignment:

.align i // advance current location until it is 0 mod i

.alignw i // advance current location until it is 0 mod (i * step)

The argument i is an expression that specifies a value as follows:

i any absolute number that is a power of two

Note that the current location need not be on a word boundary when current segment’s
step is 4. This can result from use of the .abs, .blkb, .byte, .string, or .ascii directives,
for example. The .align directive is used to reestablish a desired alignment.

3.11.4 Emit words or bytes directives

The following directives emit words or bytes into the current segment:

20



.word k,k,k,. . . // emit words

.long k,k,k,. . . // alias for .word

.byte k,k,k,. . . // emit bytes

.2byte k,k,k,. . . // emit bytes in chunks of 2

.3byte k,k,k,. . . // emit bytes in chunks of 3

.4byte k,k,k,. . . // emit bytes in chunks of 4

.short k,k,k,. . . // alias for .2byte

Each of the arguments k is an expression that specifies a valueas follows:

k any absolute number or relocatable offset.

Multiple arguments separated by commas may be specified.
Emitting bytes gets very special treatment from the assembler. The “.byte” direc-

tive emits one byte for each argument, the “.2byte” directive emits two bytes for each
argument, the “.3byte” directive emits three bytes for eachargument, and the “.4byte”
directive emits four bytes for each argument. The emitted bytes are taken from the
argument value starting with its least significant byte. Argument values that require
relocationare permitted. Any part of the argument value that is not emitted is just
ignored.

If the current segment’s step is 4, meaning that it is a byte-addressed segment, each
byte is emitted at a consecutively higher byte address just as you might expect. How-
ever, if the current segment’s step is 1, meaning that it is a word-addressed segment,
the assembler groups the sequence of bytes into chunks of four, arranges each chunk
into a word value, and emits the chunks into successive words.

Note that “.4byte” is not the same as “.word” because the former emits four bytes
per argument regardless of where the word boundary falls, whereas the latter always
checks for word alignment.

If you want to know why I had to implement all these crazy directives, gcc uses
them when writing debugging information. Emitting byte values that require relocation
can generate many relocation patches in the output file.

3.11.5 Emit string directives

The following directives emit a string into the current segment:

.ascii z // emit string

.string z // emit string with null terminator

The argument z is a string of any length. The characters in thestring are emitted in
order effectively using .byte directives. In the case of .string an additional zero byte is
emitted at the end.

3.11.6 Region nesting directives

Bas maintains a current region name as it processes the source input. Any identifier
that starts with a “.” (except for “.” itself) is implicitly prefixed by the current region
name. This permits labels and symbols to be abbreviated locally in a region. Regions
can be nested.

21



.enter name // enter region

.leave name // leave region

The argument name is an identifier that is used to name the region. Note that if this
identifier starts with “.” it will itself be subject to the implicit prefix transformation. To
make this work with nested regions, in both .enter and .leavethe argument belongs to
the enclosing region.

Opcodes are immune to the implicit prefix transformation.

3.11.7 Assume register directives

The utility of the opcodes that synthesize instructions is greatly enhanced if some reg-
isters can be assumed to contain a known value, for example, zero. This is specified by
the following directives:

.assume r,k // henceforth assume r= k

.noassume r // henceforth contents of r is unknown

Each of the arguments is an expression that specifies a value as follows:

r a register number.
k any absolute number or relocatable offset.

The .assume applies to all subsequent source input lines until cancelled by a .noassume.

3.11.8 Global symbol directive

A symbol is declared as global using the global symbol directive:

.globl n // declare symbol n as global

If the symbol is defined in the current assembly, then its nameand definition is made
available to the relocating loaded to bind external references. The definition must be an
absolute number or a relocatable offset. If the symbol is notdefined in the current as-
sembly, then it signifies an external reference to a global symbol. The-x option causes
all otherwise undefined symbols to be declared as global, unless they are specifically
declared as local.

3.11.9 Local symbol directive

A symbol is declared as local using the local symbol directive:

.local n // declare symbol n as local

The purpose of declaring a symbol as local is to override the presumption of the-x
option with regard to a common request.

22



3.11.10 Common request directive

A symbol is requested to be defined as the base address of a common area using the
common request directive:

.comm n,s,a // request a common area

The common request directive requests that the symbol “n” bedefined as the base
address of a common area of size “s” bytes with alignment “a”.The common area will
be of kind “data” with the same address rotation as the data segment. The alignment
“a” may be omitted, which case it defaults to the step of the data segment.

If the symbol “n” is declared as local, then this is a local common request, and it
will be satisified by allocating space at the end of the data segment. The definition of
“n” will be local and no other object file will be able to see it.

Otherwise, if the symbol “n” is declared as global, then thisis a global common
request. Global common requests of the same symbol made different object files are
combined into a single request by taking the maximum of the requested sizes and the
maximum of the alignment requirements.

3.11.11 Include directive

A file can be incorporated into the source stream using the include directive:

.include z // include file “z” at this point

This file name z is a string. Each of the specified directories of include files is searched
in order to find the indicated include file. The-I option is used to specify an include
file directory.

3.11.12 Commentary directives

The gcc compiler emits various directives related to debugging. For the present, the
following directives are ignored:

.size n,k // declare size of symbol n to be k

.type n,. . . // declare type of symbol n

.file s // file name s

.ident s // compiler identification s

3.12 Predefined symbols

Bas manages a collection of predefined symbols. Some of thesesymbols have values
that change as assembly progresses (which is not possible for user defined symbols).
The predefined symbols are as follows:

pc the program counter special register, read via Ra overload 31
link the link special register, read via Ra overload 30 and written via Rw overload 30
rq the read queue special register, read via Ra overload 29

23



wq the write queue special register, written via Rw overload 31
. the current location in the current segment
code.rota the code segment address rotation (an absolute number)
data.rota the data segment address rotation (an absolute number)
code.stepaddress offset between words in the code segment (an absolute number)
data.step address offset between words in the data segment (an absolute number)

24



Chapter 4

Utilities

Various utility tools manipulate relocatable object files.The archiver collects relocat-
able object files into a library archive. The loader binds relocatable object files into
an executable object file. The image maker converts an executable object file into a
binary memory image. The Virtex mem file maker convers an executable object file
into Virtex mem files. There is also a utility to process a file of bytes into C source that
can then be compiled into a relocatable object file. These utilities are described next.
The format of the object files is described in Appendix B.

4.1 Archiver - Bar

Bar combines a number of relocatable object files into a library archive. Bar is invoked
using the command line

Bar command archive.a modulea.o moduleb.o ...

Bar adds the modules to the archive, creating the archive first if necessary. The com-
mand is a string of characters, each of which is interpreted separately. The following
command characters are supported:

r (“Replace”) Add new modules to the end of the archive, deleting any existing ones
with the same names.

q (So-called “quick”) Add new modules to the end of the archive, without deleting any
existing ones that might have the same names.

c (“Create”) Expect to create the archive. The archive is always created if it does
not already exist, but a warning is issued in such a case unless this command is
specified.

v (“Verbose”) Give additional commentary on the actions taken.

Exactly one of “r” or “q” must be given. Any number of relocatable object files may
be provided as input. You can also provide an archive as input, in which case all of the
relocatable object files it contains are added to the archivebeing constructed.

25



The command line format conforms to that of the gnu archiver so that the gnu tool
chains can use it.

4.2 Loader - Bld

Bld is a relocating loader. Bld reads a number of relocatableobject files and archive
files, resolves external symbol references, concatenates same-named segments, and
outputs an executable object file. The format of the object file is described in Ap-
pendix B.

Bld is invoked using the command line

Bld [options] module.o library.a ...

Any number of relocatable object files and library archive files may be provided. The
files are incorporated into the final executable in the order in which they appear on
the command line. If the file is a relocatable object file, it isincorporated without
further ado. If the file is a library archive file, its constituent object files are scanned
to determine if any satisfies an external symbol reference and, if so, that object file is
incorporated. If any object file is incorporated from a library archive, the archive is
rescanned to see if additional object files need to be incorporated.

Options start with a hypen (- ). The following options control relocation and are
processed in the order they appear on the command line:

-codebase=n Specify that code segments will be relocated to start at memory word
indexn (in hex). If there are multiple code segments, they are relocated in suc-
cession to start at the memory word index after the previously relocated code
segment, in the order in which they are encountered as the input files are pro-
cessed. Note that the memory word index is independent of thesegement address
rotation.

-database=n Specify that data segments will be relocated to start at memory word
indexn (in hex). If there are multiple data segments, they are relocated in suc-
cession to start at the memory word index after the previously relocated data
segment, in the order in which they are encountered as the input files are pro-
cessed. Note that the memory word index is independent of thesegement address
rotation.

-codefloat Specify that the code segments will be relocated to start at amemory word
index after the previously specified kind of segment (if any).

-datafloat Specify that the data segments will be relocated to start at amemory word
index after the previously specified kind of segment (if any).

The following options specify the name of various output files:

-o a.out Specify that the output executable object file will be nameda.out

-map a.map Create a map filea.maplisting the base word index and size of segments
and the definitions of global symbols.

26



The following options control the loading of libraries. They can occur anywhere in the
command line and are processed in order with other files that are loaded.

-Ldir Add dir to the library search path.

-lxxx Find the library archive filelibxxx.a on the library search path and load it as
described above.

The following options control howcommonsymbols are processed. A common symbol
is created with a.comm assembler directive or with an uninitialized global non-extern
variable declaration in C. Common symbols are weird in that multiple object files may
declare them. The multiple declarations are combined by taking the largest length and
most restrictive alignment requirement.

-commbss Specify that common symbols should be allocated in the.bss segment.
This is the default.

-nocommbssSpecify that common symbols should be allocated by creatinga special
data segment for each one. The segment is named by prefixing “comm-” to the
name of the common symbol. This is the way the loader used to work.

The following options control how debugging segments are processed. When GCC
is given the-g option it generates debugging information into data segments whose
names start with “.debug ”. Such segments are called debugging segments.

-debugsegSpecify that debugging segments should be changed to have kind “debug”,
which causes them to be relocated separately from code and data segments and,
more significantly,not to appear in the memory image created by Bimg or Bsim.
This is the default.

-nodebugsegSpecify that debugging segments should be left as data segments. This
is the way Bld used to work.

4.3 Image maker - Bimg

Bimg is the image maker. Bimg reads an executable object file,constructs a memory
image by applying all specified patches, and outputs the result as a binary memory
image file. The binary image file contains a consecutive rangeof memory words, start-
ing with the word at the lowest memory word index loaded by theexecutable object
file and continuing through the highest memory word index loaded by the executable
object file.

Bimg is invoked using the command line

Bimg [options] a.out

One executable object filea.out is expected. Options start with a hypen (- ). The
following options are provided:

-img a.img Specify that the output binary memory image file will be nameda.img
instead of the default, which is to take the name of the input executable object
file and replace the extension with.img

27



4.4 Virtex mem file maker - Bvmem

Bvmem makes Virtex mem files that can be used to initialize thecache memory of
a Beehive design. Bvmem reads an executable object file, constructs separate code
and data memory images by applying all specified patches, andoutputs the results in
Virtex mem file format. Each resulting Virtex mem file contains a consecutive range
of memory words starting with word index zero and continuingthrough the last word
loaded by the object file into that memory image. The format ofthese mem files is
described in the Data2MEM Users Guide [2].

Note that the Beehive has separate code and data caches. Eachcache is initialized
to contents that appear to have been fetched from physical memory word indexes zero
through0x3ff . However, since the caches are separate, the initialized contents of the
code and data caches are independent. The loader can relocate both the code segment
and the data segment to start at word index zero, which is the proper arrangement for
constructing Virtex mem files.

Bvmem creates two Virtex mem files, one for code and one for data. Given an input
file a.outby default the resulting code Virtex mem file is namedacode.memand the
resulting data Virtex mem file is namedadata.mem. The extension.mem is required
by the Virtex tools.

Bvmem is invoked using the command line

Bvmem [options] a.out

One executable object filea.out is expected. Options start with a hypen (- ). The
following options are provided:

-memb.mem Specify that the Virtex mem files will be namedbcode.memandbdata.mem
instead of the default, which is to take the name of the input executable object
file and replace the extension withcode.mem anddata.mem

4.5 File of bytes processor - Bfiledata

Bfiledata takes a file of bytesfile.datand produces a C source filefile.cthat defines and
initializes two global symbols,file andfile cnt. A header filefile.h is also produced
that contains external definitions for these symbols. The global symbolfile is defined
as an array of bytes and is initialized to the contents of the file of bytes. The global
symbolfile cnt is defined as an int and is initialized to the number of bytes inthe array.
Bfiledata is invoked using the command line

Bfiledata [options] file.dat

Options start with a hypen (- ). The following options are provided:

-c b.c Specify the name of the output C source file. The default isfile.c

-h b.h Specify the name of the output C header file. The default isfile.h

-gbl b Specify the name of the global that is initialized to the array of bytes. The
default isfile

28



-cnt b cnt Specify the name of the global that is initialized to the sizeof the array. The
default isfile cnt

29



Chapter 5

Simulator - Bsim

Bsim is a simulator for Beehive [1]. Bsim reads an object file,initializes a simulated
memory image, and then simulates Beehive instructions beginning at the address of
main . The format of the object file is described in Appendix B. The simulator imple-
ments the full physical memory space and a selectable numberof normal cores, each
with a full instruction set, instruction and data caches, debug unit, and most of the
coprocessors.

5.1 Running Bsim

Bsim is invoked using the command line

Bsim [options] program.out

Options start with a hypen (- ). The following options are supported:

-trace Turn on instruction trace mode before starting the simulation. Instruction trace
mode can also be turned on or off during simulation by using the simulator con-
trol instructions described in Section 3.10.11.

-debug Activate the interactive debugger on core 1. The interactive debugger is de-
scribed in Section 5.6.

-ncore=n Set the number of normal cores ton. The default is 1 normal core. Note
that all cores start execution at the same start address, either zero if there are any
cache preload requests, or otherwise the global symbolmain . Special startup
code must be used to allocate a separate properly-aligned stack to each core.

-megastepmax=n Set the maximum number of cycles that the simulator will execute
to n million. Note that this number is in millions. It takes the simulator about a
second per core to simulate a million cycles. The default is 0which means no
limit.

-cachestatPrint out cache statistics for each core and the end of simulation. This is
the default.

30



-nocachestatDo not print out cache statistics for each core and the end of simulation.

-icache=n file.mem Add icache coren file.memto the list of cache preload requests.

-icachefile.mem Add icache core 0file.memto the list of cache preload requests.

-dcache=n file.mem Add dcache coren file.memto the list of cache preload requests.

-dcachefile.mem Add dcache core 0file.memto the list of cache preload requests.

5.2 Cache preload requests

The simulator supports preloading of instruction and data caches. This is requested by
the -icache and -dcache options. There may be more than one request. The requests are
processed in order, after the requested number of cores has been created and physical
memory has been initialized.

Note that if there are any cache preload requests, the simulator will start execution
of all cores at location zero. This corresponds to a reset in the hardware.

A cache preload request consists of (1) a specification of icache or dcache, (2) a
core number, and (3) a file. If the core number is zero it is interpreted as applying to all
cores, otherwise the preload request applies only to the indicated core, if present. The
file is expected to be in vmem format such as created by Bvmem.

Preloading a cache initializes the contents of the cache as if the specified data had
been fetched from addresses 0 through 0xfff. The cache linesare marked as valid and
not dirty. The data is taken from the first 1024 words of the memfile. If the mem file
contains fewer words, it is padded with zeros.

As an example, the following command preloads core 1 with “master” code and all
other cores with “slave” code:

Bsim -icache slave.mem -icache=1 master.mem program.out

5.3 Physical memory

The simulator implements the full physical memory space of 0x80000000words. How-
ever, actually trying to use the entire memory space will likely cause the simulator to
exhaust its resources.

The simulator implements both the data cache and the instruction cache. Unless
they have been preloaded, both caches are initially entirely invalid.

Data accesses are performed more rapidly than in the hardware, especially with
regard to taking cache misses. The simulator is not cycle exact with respect to data ac-
cesses. An attempt to access a nonexistent memory address produces an error message.

The simulator supports all address rotation options. The code and data rotations are
specified in the object file.

31



supported coprocessor
yes 0: ASLI interface coprocessor (see Appendix A.6.2)
no 1: multiply coprocessor
no 2: miscellaneous output signal coprocessor
yes 3: data cache controller (see Appendix A.6.3)
yes 4: message controller (see Appendix A.6.4)
yes 5: lock controller (see Appendix A.6.5)

Table 5.1: Simulated coprocessors

5.4 Simulated coprocessors

Table 5.1 summarizes the simulation support for the variousBeehive coprocessors. At
the start of simulation, the cycle counter is set to zero, alllines in the data cache are
invalid, all receive message queues are empty, and no core holds any lock.

The simulator connects the ASLI interface register to the console. If the simulator
is not run from a console (for example, when run from inside anemacs shell), then
input is not possible due to deficiencies in Windows. In such acase output will happen
normally but it will appear that the receiver never has a byteready to read.

The simulator counts cycles starting with zero at the beginning of the simulation.
A taken jump adds an extra cycle to account for the post jump nullify. Even though the
simulated memory system is fast, there may also be stalls dueto memory access.

5.5 Simulator controls

The simulator takes special notice of any instruction whichhas const=0 and Fun=OR.
After interpreting such an instruction, it interprets the count field (which is unused in
this instruction by the Beehive CPU architecture) as a special control. See the simctrl
instruction in Section 3.10.11 for how to create such an instruction in the assembler.
The controls are:

0 no operation
1 exit simulator (normal termination)
2 start tracing instructions onto the console output
3 stop tracing instructions
4 dump register file onto the console output
5 exit simulator (abnormal termination)
6–31 reserved

5.6 Interactive debugger

The simulator supports an interactive debugger attached tocore 1. The debugger is
activated using the-debug option. When active, the debugger breaks before the first
simulated instruction and accepts commands from the console input. Simulation of all

32



<cr> (empty line) run until break
i implicit break on each instruction
s implicit break on new subroutine
g run without implicit breaks
dm addr count dumpcountwords of data memory
cm addr count dumpcountwords of code memory
r dump registers
trace y trace each instruction
trace n do not trace each instruction
q quit
h print help message

Table 5.2: Debugger commands

cores is frozen while the debugger is accepting commands. The debugger commands
are summarized in Table 5.2. Each debugger command occupiesan input line.

The debugger inspects each instruction (on core 1) before itis executed. The debug-
ger can trace each instruction before execution or it can trace the instruction only when
it breaks. Tracing means that the debugger prints out the current program counter and
pending instruction in symbolic form. For example, the initial break typically produces
a trace output such as

main+00000000: $27 = $27 ANDN $27

This means that the current program counter is at offset 0 from global symbol “main”
and the pending instruction is an ANDN that stores zero into register 27.

Note that the instruction printed in an instruction trace comes from the physical
memory, as opposed to the code cache on core 1. This may be fixedin the future.

The debugger gets symbol definitions from the input files. Only global symbols
are considered. Symbols are classified as code symbols or data symbols depending on
which kind of segment they are defined in. The debugger assumes that a subroutine
extends from one code symbol to the closest next one defined ata higher address.

The debugger can perform an implicit break on each instruction or on each change
of subroutine. The execution of an exit-simulator instruction (see Section 5.5 also
causes a break. Currently there is no provision for setting break points.

The debugger can dump words from code memory or from data memory. Note that
these printouts come from physical memory rather than from the code and data caches
of core 1. This may be fixed in the future. The address to dump must be specified in
hexadecimal. This may also be fixed in the future. The addressis interpreted according
to the relevant address rotation.

33



Appendix A

Beehive architecture

The Beehive architecture is based on a 32-bit word. It has a register file containing
32 registers, a two-input ALU followed by a full barrel shifter, and an unusual queued
interface to a memory controller for access to data memory and memory mapped IO.
Instruction space and data space may be considered as separate during execution of
pre-initialized cache contents. (The Beehive hardware manual [1] should be consulted
for further details.) In addition to the register file, thereis a program counter register,
a link register (for subroutine linkage and constant assembly), and a condition code
register. All instructions have the same format, as shown inFigure A.1.

A.1 ALU function

Almost all instructions select two arguments, A and B, for the ALU, which performs a
function determined by the Function field:

0 A + B
1 A - B
2 A & B
3 A & ˜ B
4 A | B
5 A | ˜ B
6 A ˆ B
7 A ˆ ˜ B

A.1.1 ALU argument A

Argument A is specified by the Ra field. In most cases, Ra selects a register from the
register file. However, certain values of Ra are overloaded.The Ra overloads are:

29 the read queue (takes one word; stalls until read queue is nonempty)
30 the link register
31 the program counter register (address of the current instruction)

34



03

Op

45

Resv

68

Function

9

C
o

n
st

1016

Rb

1721

Count

2226

Rw

2731

Ra

Figure A.1: Beehive instruction format

A.1.2 ALU argument B

When Const = 0, argument B is specified by the Rb field, which selects a register from
the register file. Rb> 31 is reserved.

When Const = 1, argument B is generated as a constant assembled from the in-
struction in a mode determined by the Op field. There are threemodes: RbConst,
CountRbConst, and RwCountRbConst.

RbConst the constant is the Rb field (7 bits).
CountRbConst the constant is the concatenation of the Count and Rb fields (12 bits).
RwCountRbConst the constant is the concatenation of Rw[3:0], Count, and Rb fields

(16 bits). Note that in Beehive CPU version 2 the high order bit of the Rw field
is not included in the constant.

In all cases the constant is padded on the left with 0s to fill out the 32-bit word.

A.2 Major Operation

The Op field determines the constant mode, the shift mode, andvarious major effects
of the instruction, as follows:

0 RbConst, logical shift right by Count bits, write result in Rw
1 RbConst, logical shift left by Count bits, write result in Rw
2 RbConst, rotate right by Count bits, write result in Rw
3 Load link immediate (see below)
4 RbConst, arithmetic shift right by Count bits, write resultin Rw
5 CountRbConst, no shift, write result in Rw
6 CountRbConst, no shift, write result in Rw and into address queue as a write com-

mand
7 CountRbConst, no shift, write result in Rw and into address queue as a read com-

mand
8 RwCountRbConst, no shift, jump operation (see below)
9 RwCountRbConst, no shift, jump operation (see below)
10 RwCountRbConst, no shift, jump operation (see below)
11 RwCountRbConst, no shift, jump operation (see below)
12 RwCountRbConst, no shift, jump operation (see below)
13 RwCountRbConst, no shift, jump operation (see below)
14 RwCountRbConst, no shift, jump operation (see below)
15 RwCountRbConst, no shift, jump operation (see below)

35



Rw[4] Op jump operation
0 8 call: link = nextpc, jump always
0 9 jump if minus
0 10 jump if zero
0 11 jump if carry
0 12 jump always
0 13 jump if not minus
0 14 jump if not zero
0 15 jump if not carry
1 8 class 1 jump 0
1 9 class 1 jump 1
1 10 class 1 jump 2
1 11 class 1 jump 3
1 12 class 1 jump 4
1 13 class 1 jump 5
1 14 class 1 jump 6
1 15 class 1 jump 7

Table A.1: Jump operations

Many of the operations write the result of the shifter into register Rw in the register
file. In these cases, if Rw = 31 the result is also written into the write queue or if Rw =
30 the result is also written into the link register.

The load link immediate operation copies the instruction into the link register, re-
placing the low order 4 bits with zero. All other effects (condition code update, queue
reads and writes, and register file writes) are suppressed.

The jump operations suppress condition code update, queue writes, and register file
writes. (But notably a jump does not suppress queue reads, soit is possible to take a
subroutine return address from the read queue and jump to it.) In Beehive CPU version
2, the high order bit of the Rw field (Rw[4]) is not used for the constant and is instead
combined with the op field to specify the particular jump operation. Table A.1 shows
the specifications.

The jumps are divided into class 0 jumps and class 1 jumps. Class 0 jumps are the
ordinary jumps, including call. Class 1 jumps are intended for interpretation by special
function units and may do special things. At present, the only defined special function
unit is the debug unit (see Appendix A.5.1) which interpretsclass 1 jump 7.

A.3 Condition codes

Condition codes are updated at the end of an instruction (unless suppressed) and there-
fore always reflect the result of a previous instruction. Exactly those operations that
write the result of the shifter into Rw are those that update the condition codes. The
result of the shifter determines ZERO and MINUS. The result of the ALU function
determines CARRY, which is undefined except for ADD and SUB.

36



A.4 Reserved

When Const = 0, ALU argument B is specified by the Rb field, whichselects a register
from the register file. Rb> 31 is reserved.

Except for the load link immediate instruction, the Resv field is reserved and must
always contain 0.

Class 1 jumps 0 through 6 are not at present defined and must notbe used.

A.5 Special function units

The class 1 jumps 0 through 7 are interpreted by corresponding special function units 0
through 7. A class 1 jump instruction resembles a normal jumpinstruction in that the A
and B arguments are fetched, which may include pulling a wordfrom the read queue,
and an ALU result is computed without modifying the condition codes. However, the
special function unit may examine the instruction and causespecial things to happen
to the Beehive CPU.

At present, the only special function unit 7 (the debug unit)is defined.

A.5.1 Debug unit

The debug unit is designed to permit core 1 (called the mastercore) to control and
debug the other Beehive CPU cores (called the slave cores). Each Beehive CPU core
has a debug unit, although the debug unit on core 1 is of littleuse.

The debug unit maintains two state bits,runningandwantstop, and two word reg-
isters,savedPCandsavedLink. When a slave core takes a breakpoint or is stopped,
the PC is saved in savedPC, the link is saved in savedLink, running and wantstop are
cleared, and the PC is set to zero. It is assumed that appropriate code appears starting
at location zero that will save the CPU state in memory and then wait for a command
from the master core.

The Beehive CPU state is complicated, consisting of register values, the condition
codes, and the address, read, and write queues. In Beehive CPU version 2, there is no
provision to save and restore the condition codes, the address queue, or the write queue.
Consequently, breakpoints can legally be inserted only at points where the address and
write queues are empty and the condition codes are immaterial.

The debug unit interprets class 1 jump 7 instructions. The debug unit disregards
the result of the ALU and examines the low-order three bits ofthe register b field in the
instruction to determine what special things to do, as follows:

rb=0 This instruction has no effect, except possibly for pullinga word from the read
queue.

rb=1 The link is loaded with the data address of a “savearea” in which it is intended
that the Beehive CPU state for this core be saved. The savearea data address for
core N is 0x4000 + 512 * N.

rb=2 The link is loaded with the contents of the debug unit’s savedPC register.

37



rb=3 The link is loaded with the contents of the debug unit’s savedLink register.

rb=4 The link is loaded with 1 if the read queue is not empty, and with 0 otherwise.

rb=5 The link is loaded with 1 if the debug unit’s running bit is set, and with 0 other-
wise.

rb=6 The savedPC register is loaded with PC+1, the savedLink register is loaded with
link, the running bit is cleared, the wantstop bit is cleared, and the PC is loaded
with 0. The instruction at location 0 should be a nop, becausedue to pipeline
issues the Beehive CPU does not guarantee that it will actually be executed.

rb=7 Not defined.

The debug unit also interprets control messages received bythe inter-core message con-
troller. As described in Appendix , control messages have zero words of payload and
are interpreted immediately upon arrival, rather than being enqueued on the message
queue. The debug unit’s control messages are as follows:

start This control message is sent by the master core (src=1) with type=0 and it causes
the debug unit to set the running bit. It is assumed that the location zero code in
the slave core is looping waiting for the running bit to be set, whereupon it will
restore the CPU state from the savearea and resume normal execution.

stop This control message is sent by the master core (src=1) with type=1. If running
is set, the debug unit will set the wantstop bit, otherwise there will be no effect.
As described below, the wantstop bit causes the debug unit towatch program
execution and interrupt it at a point where the address and write queues are empty
and the condition codes are irrelevant.

kill This control message is sent by the master core (src=1) with type=2. If running is
set, the debug unit will immediately reset the address and write queues and force
an interruption of program execution, otherwise there willbe no effect.

When the debug unit interrupts program execution, it clearsrunning and wantstop,
loads savedPC and savedLink from PC and link, and loads PC with zero. Note that the
savedPC is the PC of the first instruction not executed.

When wantstop is set, the debug unit examines the stream of instructions executed
by the CPU looking for a legal place to interrupt. This happens when the address and
write queues are empty and the CPU is about to execute an instruction that sets the
condition codes. Instead of executing this instruction, the CPU is interrupted.

A.6 Memory controller

The processor communicates with the memory controller via three queues: the address
queue, the write queue, and the read queue.

The memory controller processes commands in order from the address queue. A
write command requires also a word from the write queue, which is then stored in

38



02

wix

39

line

1030

cache alias

31

0

Figure A.2: Memory space address format

02

coproc

330

subselection

31

1

Figure A.3: Coprocessor space address format

the specified data address. A read command causes the word to be fetched from the
specified data address and then placed in the read queue.

The processor accesses the write queue via an Rw overload. Each time an instruc-
tion specifies an unsuppressed write of Rw=31, the result of the shifter is placed onto
the write queue. If necessary, the processor stalls until the write queue is non-full.

The processor accesses the read queue via an Ra overload. Each time an instruction
specifies an unsuppressed read of Ra=29, the value is taken from the read queue. If
necessary, the processor stalls until the read queue is non-empty.

Access to the address queue is specified via the major operation. The output of the
shifter is rotated right by the data segment’s address rotation and the result is placed
onto the address queue along with the indication of whether it is a read command
or a write command. Note that the address queue always contains word addresses,
regardless of the data segment’s address rotation.

In the Beehive CPU version 2, there isno hardware checkto prevent the address
queue from overflowing. If this happens the behavior is undefined. Hence it is the
software’s responsibility to avoid such a situation.

Note that some requests on the address queue may take a long time to complete.
The worst case is probably a complete data cache flush when thedata cache is entirely
dirty. The only way the software can assure that the address queue is draining is by
issuing a read request and waiting for the read data to come back on the read queue.

A.6.1 Address queue value

Each value on the address queue refers either to memory space(when bit 31 is 0) or
coprocessor space (when bit 31 is 1). Note that the shifter result that the CPU has
to generate in order to create an address queue value dependson the data segment’s
address rotation.

Figure A.2 shows the format of a memory space address queue value. The low
order three bits give the word index in a cache line. The next seven bits give the cache
line number in the data cache. The next 21 bits distinguish different cache aliases.
Finally, bit 31 must be 0.

Figure A.3 shows the format of a coprocessor space address queue value. The low
order three bits select the specific coprocessor. The next 28bits are provided to the

39



07

Byte

8

R
ec

v

9

X
m

it

1013

Core

1417

ethCore

1824

clock

2531

undefined

Figure A.4: ASLI interface register format

coprocessor for subselection. The coprocessor can use the subsection bits in any way
it wants. Finally, bit 31 must be 1.

The coprocessors numbers are defined as follows:

0 ASLI interface
1 multiply coprocessor
2 miscellaneous output signal controller
3 data cache controller
4 inter-core message controller
5 lock controller
6 undefined
7 undefined

A.6.2 ASLI interface

Coprocessor 0 is the ASLI interface. It contains two registers: an ASLI interface reg-
ister, subselected when address queue value bit 3 is 0, and a cycle counter register,
subselected when address queue value bit 3 is 1. These registers are described next.

Figure A.4 shows the format of the ASLI interface register.
Reading the ASLI interface register gives the following status:

clock the system clock speed in MHz
ethCore the core number of the EtherNet core
Core the core number of this core
Xmit 1 = the transmitter is ready for another byte
Recv 1 = the receiver has a byte ready to read
Byte the byte the receiver has ready, if any

The system clock speed for the BEE3 is 125 MHz and for the ML509is 100 MHz. The
simulator claims a clock speed of 2 MHz, which is roughly accurate. The core number
of a normal core is in the range1 . . . ethCore− 1.

Writing the ASLI interface register has the following effects:

Xmit 1 = provide a byte to the transmitter, assuming it was ready
Recv 1 = acknowledge the byte from the receiver, assuming it was ready
Byte the byte provided to the transmitter, if any

Figure A.5 shows the format of the cycle counter register. Reading the cycle counter
register gives the number of instruction cycles (counting both executed instructions and
stalls) that have elapsed since some arbitrary initial point. Writing the cycle counter
register has no effect.

40



031

cycle count

Figure A.5: Cycle counter register format

02

3

39

first

1016

count

17

In
va

l

1830

undefined

31

1

Inval 1 = invalidate, 0 = clean
count one less than the number of consecutive cache lines to process
first the number of the first cache line to process

Figure A.6: Data cache controller address queue write valueformat

A.6.3 Data cache controller

Coprocessor 3 is the data cache controller. This coprocessor is unusual in that it is
accessed using an address queue write with no words written on the write queue.

Figure A.6 shows the format of the data cache controller address queue write value.
Note that bit 31 must be 1 to select coprocessor space and the low order three bits must
contain 3 to select the data cache controller. Note that the shifter result that the CPU
has to generate in order to create such an address queue valuedepends on the data
segment’s address rotation.

A.6.4 Inter-core message controller

Coprocessor 4 is the inter-core message controller. This coprocessor is unusual in that
the number of words written to the write queue (when sending amessage) or read from
the read queue (when receiving a message) depends on the contents of the message
header.

Messages consist of a header and 0 to 63 words of payload. Notethat zero words
of payload is permitted, but it is interpreted as a control message by the receiving
core’s message controller and will not be enqueued on the message queue for soft-
ware reception. Control messages are described in the discussion of the debug unit in
Appendix A.5.1.

To send a message, you first write the payload words to the write queue. Then you
write the header as an address queue write value whose formatis shown in Figure A.7.
Note that bit 31 must be 1 to select coprocessor space and the low order three bits must
contain 4 to select the message controller. Note that the shifter result that the CPU
has to generate in order to create such an address queue valuedepends on the data
segment’s address rotation.

To receive a message, you must poll by writing a receive request as an address

41



02

4

36

dstCore

712

length

1316

type

1730

undefined

31

1

type the software message type, uninterpreted by hardware
length the number of words in the message payload
dstCore the destination core for the message

Figure A.7: Message controller address queue write value format to send a message

02

4

330

undefined

31

1

Figure A.8: Message controller address queue read value format to poll for a message

queue read value whose format is shown in Figure A.8. Note that bit 31 must be 1
to select coprocessor space and the low order three bits mustcontain 4 to select the
message controller. Note that the shifter result that the CPU has to generate in order to
create such an address queue value depends on the data segment’s address rotation.

Then you read a status word from the read queue. The format of the status word
is shown in Figure A.9. If the status word is zero, there is no message to be received
at this time. Otherwise, the source core number will be non-zero, the message payload
length will be non-zero, and the message payload words have been enqueued onto the
read queue immediately after the status word. You must read the payload words from
the read queue.

Note that the hardware provides a receive message queue at each core but no flow-
control. The receive message queue is 1024 words long, whichis large enough to
hold a maximum length message (1 header word + 63 payload words) from each core.
Results are undefinedif a receive message queue overflows. Software must enforce a
flow-control discipline so that this does not happen.

A.6.5 Lock controller

Coprocessor 5 is the lock controller. This coprocessor is unusual in that no words are
written to the write queue when loading an address queue write to release a lock.

A lock is conditionally acquired by writing an address queueread value and a lock
is released by writing an address queue write value. In both cases, the address queue
value has the same format, which is shown in Figure A.10. Notethat bit 31 must be
1 to select coprocessor space and the low order three bits must contain 5 to select the
lock controller. Note that the shifter result that the CPU has to generate in order to
create such an address queue value depends on the data segment’s address rotation.

When you write an address queue read value to conditionally acquire a lock, the
lock controller enqueues a word onto the read queue that indicates the result of the

42



05

length

69

type

1013

srcCore

1431

undefined

srcCore the core number that sent the message
type the software message type, uninterpreted by hardware
length the number of words in the message payload

Figure A.9: Message controller status word format

02

5

38

lock number

930

undefined

31

1

Figure A.10: Lock controller address queue value format

attempt. The value is zero to indicate a failed attempt, and non-zero to indicate a
successful attempt. Attempting to acquire a lock which you already hold is always
successful.

When you write an address queue write value to release a lock that the core cur-
rently holds, the lock is released. There is no effect if the core does not hold the lock.
In any event, no words are removed from the write queue.

A.7 Instruction fetch

Instructions are fetched as follows. The content of the pc isrotated right by the code
segment’s address rotation and the result is used as the wordaddress of the instruction
to fetch. Instructions cannot be fetched from coprocessor space.

43



Appendix B

Object file format

For convenience in software tool development, object files are represented as XML
format text files. A relocatable object file consists of an<object> element. An
archive file consists of an<archive> element. An executable object file is identical
in format to a relocatable object file, except that it is presumed that no unbound external
symbol references remain and that the global symbol “main” is defined to specify the
program entry point.

Next we describe the elements in the document model in more detail.

B.1 Archive element

The<archive> element represents an archive of relocatable object files. It contains
a number of<object> subelements each of which represents a relocatable object file.

B.2 Object element

The <object> element represents a relocatable object file. It contains a number
of <segment> , <local> , <globl> , <extrn> , and<comm>subelements. Each
segment subelement represents a segment within the relocatable object file.

The local, globl, extrn, and comm subelements relate to symbols within the relo-
catable object file. Each local subelement represents a local symbol defined within the
object file. Local symbols are not used for binding external symbol references and
need not be unique. Each globl subelement represents a global symbol defined withing
the object file. Each extrn subelement represents an external symbol reference. Each
comm subelement represents a global common request.

The<object> element has the following attributes:

file Name of the assembler source file that generated this relocatable object file.

coderota Address rotation for the code segment (in hex).

datarota Address rotation for the data segment (in hex).

44



B.3 Segment element

The <segment> element represents a relocatable memory segment. It contains a
sequence of<w> (word), <z> (zero),<p> (patch), and<cp> (choice patch), subele-
ments that specify the memory contents and relocation patches of the segment.

The word and zero subelements must be processed in sequence.The word subele-
ment specifies the absolute value of the next word in the segment. The zero subelement
specifies that the next several words in the segment have an absolute value of zero. If
the segment ends with a number of zero words, there need not bea final zero element to
specify them, since theisize segment attribute tells how many words are contained
in the segment.

Once the absolute values of all words in the segment have beendetermined by
the word and zero elements, the patch elements can be processed to apply relocation
patches. Each patch element specifies the relative word index within the segment to
which it applies. Multiple patches can be applied to the samememory word. The
choice patch element is a generalization of the patch element and specifies a number of
alternative patches to be attempted on a specified memory word.

The<segment> element has the following attributes:

name Name of the segment.

kind Kind of the segment. There are only two possible kinds, “code” and “data”.

ibase Base memory word index for the segment (in hex).

isize Length of the segment in words (in hex).

rota Address rotation of the segment (in hex).

alignbic Mask specifying which bits in the base memory word index mustbe zero for
proper alignment of this segment (in hex).

B.4 Word element

The<w> element represents a memory word in a segment. It contains nosubelements
and has the following attributes:

v Absolute value of the word (in hex).

B.5 Zero element

The <z> element represents a sequence of zero words in a segment. It contains no
subelements and has the following attributes:

c Number of zero words (in hex).

45



B.6 Patch element

The<p> element represents apatchin a segment. A patch specifies a value

( ( ref + off ) & ˜ bic ) ROL rol

that is computed and then OR’ed into a specified word within the segment. Theref
is either a global symbol reference or the base address of a segment in the current
relocatable object file. A global symbol reference can be a globl symbol defined within
the current object file or an extrn symbol requested by the current object file.

The<p> element contains no subelements and has the following attributes:

i Relative word index within the segment to which this patch applies.

sym Name of a global symbol. Excludes the seg attribute.

seg Name of a segment within this relocatable object file. Excludes the sym attribute.

off Offset from the global symbol or segment base (in hex). The default is “0”.

bic Mask of bits to clear after computing the relocated offset (in hex). The default is
“0”.

rol Number of bit positions to rotate left after masking (in hex). The default is “0”.

B.7 Expression patch element

The<ep> element represents anexpression patchin a segment. An expression patch
specifies a word index within the segment that is to be patchedand a number of sym-
bolic expression patch alternatives. Each alternative caneither succeed or fail. The first
successful alternative specifies a value that is OR’ed into the specified word within the
segment. It is an error if none of the alternatives are successful. Each alternative is
represented by a expression subelement contained within the<ep> element.

The<ep> element has the following attributes:

i Relative word index (in hex) within the segment to which thischoice patch applies.

msg Commentary to be included in the error message if none of the alternatives are
successful. The default is the empty string.

There are four types of expression element:<val> , <refsym> , <refseg> , and
<bin> . The first three types are leaves and the last type representsa binary operation.

The<val> expression element specifies an absolute value. It has one attribute:

v Absolute value (in hex).

The<refsym> expression element specifies a reference to a global symbol.It has
one attribute:

name The name of the symbol.

46



The<refseg> expression element specifies a reference to a segment. It hastwo
attributes:

name The name of the segment.

off The offset (in hex) from the start of the segment. The defaultis 0.

The<bin> expression element specifies a binary operation. It contains two subele-
ments and it has one attribute:

op The binary operation to be performed in the values of the two expression subele-
ments.

The possible operations are add, sub, ior (bitwise inclusive or), bic (bitwise clear), rol
(rotate left), and mbz (must be zero). The bic operation computes the bitwise and of
the first argument with the complement of the second of the second argument. The mbz
operation checks that the bitwise and of the first and second arguments is zero, and if
so the result is the first argument. If not, the expression fails.

B.8 Extrn element

The <extrn> element represents an external symbol reference within a relocatable
object file. It contains no subelements and has the followingattributes:

name Name of a global symbol.

B.9 Globl element

The<globl> element represents a global symbol definition within a relocatable ob-
ject file. A global symbol can be defined as (1) an absolute value, (2) an offset from
another global symbol, or (3) an offset from the base of a segment in the current object
file.

The<globl> element contains no subelements and has the following attributes:

name Name of the global symbol being defined.

sym Name of a global symbol. Excludes the seg attribute.

seg Name of a segment within this relocatable object file. Excludes the sym attribute.

off Offset from the global symbol or segment base (in hex). If neither sym nor seg
attribute appears, then “offet” is the absolute value of thedefinition. The default
is “0”.

47



B.10 Local element

The<local> element represents a local symbol definition within a relocatable object
file. A local symbol can be defined as (1) an absolute value, (2)an offset from a global
symbol, or (3) an offset from the base of a segment in the current object file.

The<local> element contains no subelements and has the following attributes:

name Name of the local symbol being defined.

sym Name of a global symbol. Excludes the seg attribute.

seg Name of a segment within this relocatable object file. Excludes the sym attribute.

off Offset from the global symbol or segment base (in hex). If neither sym nor seg
attribute appears, then “offet” is the absolute value of thedefinition. The default
is “0”.

B.11 Comm element

The<comm>element represents a global common request within a relocatable object
file. It gives the name of a global symbol which is requested tobe defined as the base
address of a common area of a specified minimum size, allocated in a segment of a
specified kind with a specified address rotation. If this symbol is not otherwise defined,
then the loader is requested to create such a common area and define the symbol as its
base address. Multiple global common requests of the same symbol name can be com-
bined by taking the maximum of the sizes and combining the alignment requirements.

The<comm>element contains no subelements and has the following attributes:

name Name of the common area being requested.

kind Kind of segment in which the requested common area should be allocated.

isize Size of the requested common area in words (in hex).

rota Address rotation of the segment in which the requested common area should be
allocated (in hex).

alignbic Alignment requirement of the requested common area, expressed as a mask
of the word index bits that must be zero (in hex).

48



Appendix C

Software conventions

Here we describe the software conventions used by compilersfor the Beehive architec-
ture.

C.1 Register usage

The Beehive CPU has 32 general purpose registers, although afew of the higher-
numbered registers are overloaded in the instruction architecture and are therefore not
as “general purpose” as the others. Furthermore, in version2 of the CPU register 0 is a
fixed zero register. Table C.1 summarizes the Apiary register usage conventions. The
columns are described in more detail as follows.

Name. This column gives the name of the register as used in compiler-generated as-
sembly code.

Beehive overload.A few of the higher-numbered registers have overloaded meanings
when used as Ra or Rw in a Beehive instruction. This column describes the
overloaded meaning, if any.

Apiary purpose. This column gives the purpose of the register as used during execu-
tion of compiler-generated code.

Fixed zero. The register is fixed at the value zero.

General. The register can be used for any purpose, such as storing a local vari-
able or a compiler-generated temporary.

Frame pointer. The register is used to store the frame pointer. If the current
subroutine does not use a frame pointer, this is the same as a general regis-
ter.

Temporary. The register is used in a canned instruction sequence that isconsid-
ered as a single instruction by the compiler. For example, the gcc compiler
assumes that any primitive data type can be transferred between a general
register and memory without requiring an additional temporary register to

49



reg name
Beehive
overload

Apiary
purpose

return
value

parameter
passing

callee
save

0 zero no fixed zero n/a
1 r1 no general 1st word no
2 r2 no general 2nd word no
3 r3 no general 1st word no
4 r4 no general 2nd word no
5 r5 no general 3rd word no
6 r6 no general 4th word no
7 r7 no general 5th word no
8 r8 no general 6th word no
9 r9 no general yes
10 r10 no general yes
11 r11 no general yes
12 r12 no general yes
13 r13 no general yes
14 r14 no general yes
15 r15 no general yes
16 r16 no general yes
17 r17 no general yes
18 r18 no general yes
19 r19 no general yes
20 r20 no general yes
21 r21 no general yes
22 r22 no general yes
23 fp no frame pointer yes
24 t1 no temporary no
25 t2 no temporary no
26 t3 no temporary no
27 p1 no platform no
28 sp no stack pointer yes
29 vb Ra=RQ void bval no
30 r30 Ra,Rw=LINK none no
31 r31 Ra=PC, Rw=WQ none no

Table C.1: Apiary register conventions

be allocated. This assumption comes into play when the compiler has to
spill registers because it has run out. Unfortunately, the Beehive has no
instructions to load or store bytes. The only way to accomplish it requires
a sequence of instructions using several temporary registers. This is what
the “temporary” registers are for. Since temporary registers are never used
otherwise by compiler-generated code, they are also freelyavailable for use
by assembly-language support routines.

50



Platform. The register is reserved for use by the platform, such as, forexample,
as a pointer to the thread control block. Patform registers are not used by
the compiler nor by any of the compiler runtime support routines.

Stack pointer. The register is used as the stack pointer.

Void bval. This register has two uses. First, some instructions are needed just
for their effects on the condition codes or on the address queue but these
instructions nonetheless must specify a destination register. The void bval
register is used for this purpose. Second, the void bval register is used as
part of a canned instruction sequence to construct a value which is subse-
quently used as the Rb argument of an instruction.

None. The register has no purpose.

Return value. The return value registers are used in passing the return value from a
subroutine to its caller. Different things happen depending on whether the return
value is a primitive type or pointer, or a struct, as discussed in Section C.3.1.

Parameter passing.A number of registers are available for passing parameters to a
subroutine. There is considerable complexity here, since some parameters may
be passed in registers and some on the stack, as discussed in Section C.3.4.

Callee save.Some registers are preserved across a subroutine call. If the callee has a
reason to use the register, it can save and then later restorethe register’s contents.
Other registers need not be preserved across a subroutine call.

C.2 Memory layout

The Beehive architecture has a rather unusual memory layout. The memory space
consists of232 words of 32 bits each. These words are indexed by word numbers
0 . . . 232

− 1.
Memory space is divided into a top half and a bottom half. The bottom half of

the memory space is occupied by physical memory. Hence thereare231 words or
8 gigabytes of physical memory. The top half of memory space is occupied by I/O
devices. The Beehive hardware manual should be consulted tolearn about the I/O
devices.

Instruction references use word numbers. This is reflected in the contents of the
program counter, jump calculations, and subroutine returnaddresses. Hence the pro-
gram counter can address any word in physical memory. It is considered improper for
the program counter to address I/O space.

Data references, on the other hand, are different. In the Beehive architecture, data
memory access is accomplished via queues that transfer addresses and data between the
Beehive CPU and the memory controller. When a Beehive CPU instruction specifies
that the ALU result is to be enqueued onto the address queue for transfer to the memory
controller, the value that actually gets enqueued is the ALUresult rotated right by two
bit positions. The memory controller then treats the value it gets from the address
queue as a word number.

51



What this means is that for the bottom230 words of memory space, the Beehive
CPU addresses data words as if it were using byte addresses. The addresses are pre-
cisely those values in the range[0 . . . 232

− 1] that are zero mod four. Note that the
Beehive memory system has no concept of byte access or of unaligned word access.
The Beehive memory system fetches and stores words referenced by word number,
with the funny tweak that the word number is determined by rotating the CPU data
address right by two bit positions. Still, it looks to software as if the memory system
uses byte addressing.

Byte addressing is important to Apiary because GCC and MSIL have an unbreak-
able assumption that their target architecture is a byte addressed machine. So, Apiary
uses the bottom230 words of memory space for data and pretends that it has such a
machine.

Most data types occupy some multiple of words. Apiary is careful to allocate in-
stances of these data types on word boundaries. Apiary givesthe address directly to
the Beehive memory system when such values are fetched and stored. For a one-byte
data type, Apiary assumes that the address might refer to anybyte. Fetching or storing
such a value requires an instruction sequence to access the relevant memory word and
insert or extract the byte. A two-byte data type is similar, except that Apiary assumes
that the address is aligned on a two-byte boundary. Table C.2describes the Apiary
implementation of primitive C types.

Even though Apiary uses only the bottom230 words of memory space for data,
software can still access the entire memory space using an unaligned address that has
been cast into a pointer toint . You had better know exactly what you are doing if you
do this.

Since Apiary uses only the bottom230 words of memory space for data, the next
230 words of physical memory can be used for instructions, effectively giving an ar-
chitecture with split I/D space. Neither GCC nor MSIL have any problem with using
word numbers to reference instructions.

C.3 C subroutine linkage

This section describes the Apiary subroutine linkage convention for C. We assume that
all subroutines have a prototype in scope. All parameters except for arrays are passed
by value. Recall that in C an array is actually passed as a pointer to its first element.

C.3.1 Return value

A subroutine that returns a primitive type or pointer uses the return value registers to
pass the return value back to the caller. Primitive types areone or two words long.
Short integers and characters are coerced to an integer before being returned, so these
cases never come up.

A subroutine declared as returning a struct actually works as follows. The caller
allocates space for the return value and passes its address via the “return value” register
r1. Regardless of the declaration of the struct, the allocated space starts on a word

52



char An unsigned integer type that occupies one byte. Coerced toint when passed
as a parameter or as a return value. When allocated as a variable, assumed to be
aligned on a word boundary. When allocated in a struct or whendereferencing a
pointer, the address is assumed to have any alignment.

signed char Same aschar except signed.

short A signed integer type that occupies two bytes. Coerced toint when passed
as a parameter or as a return value. When allocated as a variable, assumed to be
aligned on a word boundary. When allocated in a struct or whendereferencing a
pointer, the address is assumed to be aligned on a two-byte boundary.

unsigned short Same asshort except unsigned.

int A signed integer type that occupies one word. When allocatedas a variable,
assumed to be aligned on a word boundary. When allocated in a struct or when
dereferencing a pointer, the address is assumed to be aligned on a word boundary.

unsigned int Same asint except unsigned.

long Identical toint .

unsigned long Same aslong except unsigned.

long long A signed integer type that occupies two words, least significant word
first. Same alignment assumptions asint .

unsigned long long Same aslong long except unsigned.

float A floating point type that occupies one word. Same alignment assumptions as
int . Operations not yet implemented.

double A floating point type that occupies two words. Same alignmentassumptions
asint . Operations not yet implemented.

Table C.2: Apiary implementation of primitive C types.

boundary and contains an integral number of words. The subroutine stores its return
value in the indicated space and returns the address in the return value register r1.

C.3.2 Layout of the parameter block

The parameters of a subroutine call are mapped consecutively onto a region of storage
called the parameter block. Figure C.1 shows an example subroutine prototype and
its corresponding parameter block. The typeStruct4wd is assumed to be a struct
that occupies four words. The relative address of each word in the parameter block is
indicated on the left. Note that addresses decrease from topto bottom, as consistent

53



int subr (
int a,
int * p,
long long c,
Struct4wd q)

28:
24:
20:
16:

Struct4wd q

12:
8:

long long c

4: int * p
0: int a

Figure C.1: Example C subroutine prototype and its parameter block.

with a stack that grows downward.

C.3.3 Integral number of words

As each parameter is mapped to the parameter block, it is expanded if necessary to
an integral number of words. Parameters of primitive integer type, such aschar and
short , that are shorter than a word are extended to a full word. The extension is
signed or unsigned depending on whether the primitive type is signed or unsigned. The
only other kind of type that would have to be extended is a struct. In this case, padding
bytes of undefined content are added to the end as necessary toreach a word boundary.

C.3.4 Passing the parameter block

For efficiency, all or some initial part of the parameter block may be passed in registers.
The considerations are somewhat complex. The initial part of the parameter block that
is passed in registers is called theregister partand the remaining part that is passed on
the stack is called thestack part.

First, the C language supports subroutines that have a variable number of argu-
ments. Such a subroutine is called avarargs subroutineand the list of parameters in
its prototype ends with three dots, which specifies that an arbitrary number of addi-
tional, anonymous parameters may be passed. For a varargs subroutine, none of the
parameters may be passed in registers. The entire parameterblock is passed on the
stack.

Otherwise, some leading parameters in the parameter block may be passed in reg-
isters. The decision proceeds parameter by parameter. Whenonce a parameter is en-
countered for which the decision is made not pass it in registers, that parameter and all

54



996:
992:
988:
984:

Struct4wd q

:sp

reg contents
LINK return address

sp 984
r6 2nd word of long long c
r5 1st word of long long c
r4 int * p
r3 int a

Figure C.2: Stack and register contents on entry to the subroutine of Figure C.1.

following parameters are passed on the stack.
The decision for a given parameter proceeds as follows. First, if the parameter

occupies more than two words, it cannot be passed in registers. Second, if the parameter
occupies more words than remain parameter passing registers available to hold it, it
cannot be passed in registers.

In the case of a two-word parameter being passed in registers, the lower numbered
register gets the first word of the parameter.

The stack part of the parameter block is always aligned on a word boundary. Since
the Beehive CPU does not support unaligned word access, it would be terminally fool-
ish to do otherwise.

C.3.5 Calling the subroutine

Once it is determined how the parameter block divides into a register part and a stack
part, the calling program arranges the register part into parameter registers, arranges
the stack part onto the stack, and then jumps to the entry point of the subroutine.

On entry to the subroutine, the stack pointer (sp) contains the address of the first
word in the stack part of the parameter block. Figure C.2 illustrates the situation for
the subroutine of Figure C.1. Note that the parameter registers are r3 through r8, but r7
and r8 have not been used because the next parameter is four words long, which is both
longer than two words and also too long to fit in the remaining parameter registers.

C.3.6 Subroutine entry

GCC compiler subroutines obey the following conventions onsubroutine entry.
First, the return address is in the LINK register, where it issubject to being clob-

berred by any CALL or LLI instruction. So the first thing to do is push it onto the
stack.

55



996:
992:
988:
984:

Struct4wd q

980: return address
976: callee save register
972: callee save register
968: callee save register :sp

reg contents
sp 968
r6 2nd word of long long c
r5 1st word of long long c
r4 int * p
r3 int a

Figure C.3: Stack and register contents after entry to the subroutine of Figure C.1.
Three callee save registers are assumed.

Second, any callee save registers that are modified inside the subroutine are pushed
onto the stack. Registers are pushed in reverse numerical order.

Figure C.3 shows the stack and register contents after this standard entry sequence
has been performed for the method of Figure C.1. This illustration assumes that there
are three callee save registers that need to be saved.

C.3.7 Subroutine return

When a subroutine prepares to return, it first arranges its return value, if any. If the
return value is a primitive type or pointer, the return valueis left in the return registers.
In this case, the return value type is extended to an integralnumber of words just like
in the case of parameters, as discussed in Section C.3.3.

Otherwise, the return value is a struct. In this case, a pointer to a location in which
to store the return value has been passed in the “return value” register. The subroutine
copies its return value to this location. The address is leftin the return value register.

The struct return value location is always aligned on a word boundary. Since the
Beehive CPU does not support unaligned word access, it wouldbe terminally foolish
to do otherwise.

Any callee save registers that were modified by the subroutine must be restored to
the values they had on entry. This includes the stack pointerand frame pointer. Finally,
the subroutine jumps to the return address.

56



C.4 Instruction schemas

Generally, the Beehive is a RISC architecture in which each instruction specifies two
source registers, computes an ALU function, and stores the result in a destination reg-
ister. This can be summarized by the instruction schema:

Rw = ALU (Ra,Rb)

In addition, the source registerRb in a Beehive instruction can be replaced with a
constant. This is summarized by the instruction schema:

Rw = ALU (Ra,CONST )

Although a Beehive instruction supports only a limited range of constants, an arbitrary
constant can be constructed and left in a register using two preparatory instructions. In
fact, due to register overloading, there are two general registers that can be specified
for Rw andRb that are not available forRa, and using one of these is ideal for the
construction of arbitrary constants in this manner. So an arbitrary CONST operand
can be effectuated, if necessary, via a prefix instruction sequence. For simplicity the
following discussion omits details regarding constants.

In the Beehive architecture, memory access is accomplishedvia queues that transfer
addresses and data between the Beehive CPU and the memory controller. There are
three queues. Theaddress queuetransfers addresses from the CPU to the memory
controller. Theread queuetransfers fetched data words from the memory controller to
the CPU. Thewrite queuetransfers data words to store from the CPU to the memory
controller.

The use of these queues can be considered an extension to the basic instruction
schema, as discussed next.

C.4.1 Fetching from memory

Fetching a word from memory requires two CPU instructions. The first CPU instruc-
tion computes the address and enqueues it onto the address queue. In effect, this in-
struction emulates some of the addressing modes that are found in CISC architectures.
The instruction can compute the sum or difference of a sourceregister and a small con-
stant, thus emulating an offset addressing mode. The instruction can compute the sum
or difference of two registers, thus emulating an indexing addressing mode. Since the
instruction must specify a destination register to receivethe ALU result, preincrement
and predecrement addressing modes can also be emulated. Furthermore, by adding
prefix instructions to the address generation instruction,other addressing modes such
as absolute addressing and arbitrary offset addressing canbe emulated.

The memory controller dequeues the address, fetches the data word—flushing and
loading a cache line if necessary—and enqueues the data wordonto the read queue.
The second CPU instruction then dequeues this word from the read queue using an
overloaded source registerRa specification. Synchronization between the CPU and
the memory controller is accomplished by having the CPU instruction stall if necessary
until the read queue is non-empty.

57



Since the second CPU instruction can specify any three-register operation, we can
think of the Beehive architecture as supporting the instruction schema:

Rw = ALU (FETCH ,Rb)

The FETCH operand is effectuated via a prefix instruction sequence that computes
the address and enqueues it onto the address queue.

C.4.2 Storing into memory

Storing a word into memory also requires two CPU instructions. One instruction com-
putes an address and enqueues it onto the address queue in a manner exactly analogous
to that for a memory fetch. Another instruction computes thedata word to store and
enqueues it onto the write queue.

When both the address queue and the write queue are non-empty, the memory con-
troller dequeues the address and data word and performs the store, flushing and loading
a cache line if necessary. The Beehive architecture permitsthe two instructions—one
which enqueues the address and one which enqueues the data—to appear in either or-
der.

At present, Apiary software adopts the convention of enqueuing the address first
and then enqueuing the data to store. This convention has several advantages. First, it
is conceptually simpler, since storing and fetching resemble each other in that in both
cases the address is computed via prefix instructions. Second, if the condition codes
need to be examined for the data that is stored, they are available at the conclusion of
the instruction sequence. Third, for an instruction that performs both fetch and store,
the computation of the store address is hidden by the fetch latency.

A CPU instruction enqueues a data word onto the write queue using an over-
loaded destination register specification. Since this instruction can specify any three-
register operation, we can think of the Beehive architecture as supporting the instruc-
tion schema:

STORE = ALU (Ra,Rb)

TheSTORE operand is effectuated via a prefix instruction sequence that computes the
address and enqueues it onto the address queue.

C.4.3 General schema

Since both read queue overloading and write queue overloading can be specified in the
same Beehive CPU instruction, we can think of the Beehive architecture as supporting
the instruction schema:

STORE = ALU (FETCH ,Rb)

TheFETCH prefix must preceed theSTORE prefix or else the final instruction will
deadlock.

Recall that the source registerRb in a Beehive instruction can be replaced with a
constant, giving us the the general instruction schema:

STORE = ALU (FETCH ,CONST )

58



* (int * )0x01001200 = * (int * )0x01004700 ˆ 0xfeedface;

aqr_long_ld vb,0x01004700 // fetch prefix
aqw_long_ld vb,0x01001200 // store prefix
long_ld vb,0xfeedface // const prefix
xor wq,rq,vb

Figure C.4: Example C code and generated assembly code for the general schema.

Furthermore, recall that an arbitraryCONST operand may have to be effectuated via a
prefix instruction sequence. To implement the general schema, the compiler first emits
theFETCH prefix, then theSTORE prefix, then theCONST prefix, and finally the
Beehive instruction.

Figure C.4 shows an example of C code and generated assembly code for the gen-
eral schema. The fetch prefix constructs the memory fetch address via a two instruction
sequence using the link register. The fetch address is enqueued onto the address queue.
Since the address is not needed otherwise, the destination register is specified asvb .
The store prefix constructs the memory store address via a similar two instruction se-
quence. The const prefix constructs the arbitrary constant using a similar two instruc-
tion sequence, this time leaving the constant in thevb register where it can be used
by the final instruction. Then, the final instruction dequeues the fetched word from the
read queue, computes the ALU operation with the constant, and enqueues the result in
the write queue.

Although this general schema was originally employed in theBeehive GCC com-
piler, I noticed that the const prefix did not help with code density. In any case in which
the const prefix would be needed, it would take the same numberof instructions to re-
quire the compiler to allocate a register and assemble the constant into that register,
assuming available registers. Furthermore, forcing the compiler to load the constant
into a register exposes the constant to common subexpression elimination. So now the
GCC compiler does not use the const prefix.

59



Bibliography

[1] C. Thacker. Beehive: A many-core computer for FPGAs, Oct. 2009. Unpublished.

[2] Xilinx. Data2MEM users guide, Apr. 2009.http://www.xilinx.com/
support/documentation/sw_manuals/xilinx11/data2mem. pdf .

60



Index

absolute number, 11
APIARY, 3, 5, 6

environment variable, 3

Bas
comments, 9
directives, 18
equate definition, 12
expressions, 10
identifiers, 9
instructions, 12
label definition, 12
numbers, 9
registers, 11
running, 8
source format, 9
strings, 9

Bas opcode
.2byte, 21
.3byte, 21
.4byte, 21
.abs, 20
.align, 20
.alignw, 20
.ascii, 21
.assume, 22
.blkb, 20
.blkw, 20
.bss, 19
.byte, 21
.code, 19
.comm, 23
.data, 19
.enter, 22
.file, 23
.globl, 22
.ident, 23

.include, 23

.leave, 22

.local, 22

.long, 21

.noassume, 22

.section, 19

.short, 21

.size, 23

.string, 21

.type, 23

.word, 21
add, 13
addasr, 13
add lsl, 13
add lsr, 13
addrol, 13
addror, 13
and, 13
andn, 13
aqr add, 13
aqr ld, 15
aqr long ld, 17
aqw add, 13
aqw ld, 15
aqw long ld, 17
asr, 15
call, 16
call add, 14
j, 16
j0, 16
j0 add, 14
j0w, 15
j0x, 15
j1, 16
j1 add, 14
j1w, 15
j1x, 15

61



j2, 16
j2 add, 14
j2w, 15
j2x, 15
j3, 16
j3 add, 14
j3w, 15
j3x, 15
j4, 16
j4 add, 14
j4w, 15
j4x, 15
j5, 16
j5 add, 14
j5w, 15
j5x, 15
j6, 16
j6 add, 14
j6w, 15
j6x, 15
j7, 16
j7 add, 14
j7w, 15
j7x, 15
j add, 14
jc, 16
jc add, 14
jm, 16
jm add, 14
jnc, 16
jnc add, 14
jnm, 16
jnm add, 14
jnz, 16
jnz add, 14
jz, 16
jz add, 14
ld, 15
lli, 17
long call, 18
long j, 18
long j0, 18
long j1, 18
long j2, 18
long j3, 18
long j4, 18

long j5, 18
long j6, 18
long j7, 18
long jc, 18
long jm, 18
long jnc, 18
long jnm, 18
long jnz, 18
long jz, 18
long ld, 17
lsl, 15
lsr, 15
or, 13
orn, 13
rol, 15
ror, 15
simctrl, 18
sub, 13
x lli, 17
xor, 13
xorn, 13

expression patch, 46
exprpatch, 11

patch, 46

register number, 11
relocatable offset, 11

62


