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Chapter 1

Introduction

The Beehive software tools are a collection of programs $tsas software develop-
ment for Beehive. Available tools include a C compiler, oalting assembler, loader,
image maker, and simulator.

1.1 Tools

The available software tools are described briefly as fatow

Bgccl The Beehive C compiler. This is a port of the GNU C compilersi@n 4.3.3.
Chapter 2 describes how to use the C compiler.

Bas The Beehive relocating assembler. Chapter 3 describesgaedler in detail.

Bar The Beehive archiver, which gathers a collection of relalkt object files into a
library archive. Section 4.1 describes how to use the aechiv

Bld The Beehive loader, which loads a collection of relocatalect files into an
executable object file, binding external references. 8eai2 describes how to
use the loader.

Bimg The Beehive image maker, which constructs a binary memoagéwof an exe-
cutable object file. Section 4.3 describes how to use theemaaker.

BvmemThe Beehive Virtex mem file maker, which constructs code aatd ¥irtex
mem files from an executable object file. Section 4.4 dessfilmsv to use the
Virtex mem file maker.

Bsim The Beehive simulator, which simulates the execution ofx@tetable object
file. Chapter 5 describes how to use the simulator.

Bsimimg A version of the Beehive simulator that takes its input frobirsary mem-
ory image.



Bfiledata A utility that converts a file of bytes into a C source file thatializes
a global to an array of those bytes. Section 4.5 describe baséd the file data
utility.

1.2 File types

The various file types on which the tools operate are distsigud by convention using
standard extensions. The standard extensions and file ayp@s follows:

.c A source file written in C.

.h A header (include) file for a C program.

.as A source file written in assembly language.

.S Anintermediate assembler source file produced by compéli@gsource file.

.0 A relocatable object file produced by assembling an assersblece file. For
convenience in tool development, a relocatable objectdileni XML text file.
The format of this file is described in Appendix B.

.a An archive of relocatable object files produced by the amhi¥n archive file is
treated as a library by the loader, which loads as many relbt@object files
from it as are needed to satisfy unbound external referefroesonvenience in
tool development, an archive file is an XML text file. The fotroéthis file is
described in Appendix B.

.out An executable object file. An executable object file is preatliby the loader
from a collection of relocatable object files and archiveschhically, an exe-
cutable object file is identical in format to a relocatablg¢eabfile. However,
the expectation is that the executatble object file will hagainbound external
references. The start address is the value of the symboh™mai

.img An executable image file. An executable image file is produnethe image
maker from an executable object file and it consists of a ine@mory image
starting at some specified word index in memory. The progsaexpected to
start execution at the first word in the image.

.mem A Virtex mem file. A Virtex mem file is produced by the Virtex mdite maker
from an executable object file. The program is expected tbestacution at code
address 0.

st Alisting file. The assembler produces a listing file as ondsobutputs during
assembly. The listing file is in text format and is meant fomtamn consumption.

.map Amap file. Theloader produces a map file as one of its outpuisglassembly.
The map file is in text format and is meant for human consumptio

The following chapters describe these tools and file typeketail.



1.3 Getting the tools

The Beehive software tools can be obtained from
\\msr-svc\files\users\tomr\Beehive\apiary-distv2.ta r

Make a directory that you will use as the root directory foireBwe software tools.
There is no required name for the directory but henceforthmillecall it APIARY.
It would be a good idea to define an environment variable AMAlRat contains the
name of the root directory. (In the future this may becomedatory.)

Unzipping the Beehive software tools file into APIARY reweéte following di-
rectory structure:

APIARY/bin  Tool executables and dlls.

APIARY/include  Include files.

APIARY/lib  Library files.

APIARY/src/lib Source files used to build the library files.
APIARY/src/hello Source files of a simple C program.

In order to execute the Beehive software tools, you havedoA®dARY/bin to your
PATH environment variable.



Chapter 2
C Compiler - Bgccl

Bgccl is a port of the GCC compiler version 4.3.3 to the Bezhikppendix C de-
scribes the software conventions used by Bgccl in its empdoy of the Beehive ar-
chitecture.

2.1 Making a bootable image

Converting a C program into a bootable image file takes fapsst
1. Compiling the C source code to assembler.
2. Assembling the assembler source code to a relocataldetdibg.

3. Loading the relocatable object file with startup code @meities to produce an
executable object file.

4. Converting the executable object file to a bootable imdge fi

Starting with a C source filsource.¢ the recommended commands for performing
these four steps are as follows, whédelARYstands for the name of the Apiary root
directory:

Bgccl -quiet -std=c99 -fno-builtin -O2APIARYincludesource.c

Bas -x -datarota=2ource.s

Bld -o source.outcodebase=1000 -datafloaPIARYlib/base.csource.o-LAPIARYIib -Ic -lgcc
Bimg source.out

Next these steps are described in more detail.

2.1.1 Compiling C to assembler

Bgccl compiles a C source file to assembler code. Bgccl ikéuvasing the com-
mand line



Bgccl [options] source.c

One source file is expected. The C source caml@ace.ds compiled to the assembler
source filesource.ausing the same base file name but replacingthextension with
.S

Options start with a hypen §. GCC supports a hideously enormous number of
options. For a listing, use the command

Bgccl --help

or refer to GCC documentation such lasp://gcc.gnu.org/onlinedocs/
gce/ . Note that some of the documented options pertain to theabedcgcc driver
and not to the compiler proper, which is what Bgccl is.

The recommended command line to compile an example C solga®iirce.do
the assembler filsource.ss as follows:

Bgccl -quiet -std=c99 -fno-builtin -O2APIARYincludesource.c
The arguments are interpreted as follows:

-quiet Cause the compiler not to print lots of generally uninténgstompilation
statistics.

-std=c99 Declare that we want the c99 standard dialect of C. Withasf jlou get an
older dialect that prohibits declaring variables othemnthathe start of blocks,
which is painful.

-fno-builtin - Tell the compiler not to think it understands what printf driends do.

-O2 Ask for optimization level 2. At this level, you get nice ddtew analysis and
register allocation.

-IAPIARY/include Add the standard Apiary include directory to the search.p&-
ARY s the Apiary root installation directory (see Section 1Bferably stored
in the APIARY environment variable.

source.c This is the C source file.

2.1.2 Assembling

The assembly source code produced by Bgccl has severalfesplat affect how it
must be assembled. (1) Bgccl uses symbol names for extefastinces without ever
defining them. (2) Bgccl assumes that the data segment iadyressed.

The recommended command line to assemble the compilerafedeassembler
source filesource.qo the relocatable object figource.ds as follows:

Bas -x -datarota=8ource.s
The arguments are interpreted as follows:
-x Cause the assembler to treat each undefined symbol as anatxeference.
-datarota=2 Specify that the data segment is byte-addressed.

source.s This is the assembler source file.



2.1.3 Loading

Converting the relocatable object file into an executabjedaibile requires supplying
startup code and various libraries. The startup code pespghe C environment and is
described in Section 2.2.

The librarylibc.ais a basic C library containing malloc, some string routjraesl
simple input and output including printf. It also includesrse beehive-specific support
routines described in Append®?.

The library libgcc.a contains compiler runtime support routines for arithmetic
shifting, and for fetching and storing bytes and shorts.sTiirary must always ap-
pear last.

Assuming that the intent is eventually to produce a binarynory image that can
be loaded by the level 1 Beehive boot loader, the requiresradrihis boot loader must
also be keptin view. These requirements are as follows. lig)binary memory image
must be a continuous sequence of words starting at memorny iwdex 0x1000. (2)
The program must start execution at memory word index Ox1086se requirements
can be satisfied by supplying the proper arguments to Bld.

The recommended command line to load the compiler-gertteatd assembled
relocatable object filsource.oto produce the executable object fdeurce.outis as
follows:

Bld -o source.outcodebase=1000 -dataflodPIARVYlib/base.csource.o-LAPIARYIib -Ic -lgcc
The arguments are interpreted as follows:

-0 source.out Specify that the output file isource.out

-codebase=100Gpecify that the code segment will be relocated to start ahong
word index 0x1000. This is the required base load addreshédevel 1 Beehive
boot loader.

-datafloat Specify that the data segment will be relocated to start #fteend of the
code segment.

APIARY/lib/base.o Cause the loader to start off by loading the startup codewisic
found in the library module base.APIARYis the Apiary root installation direc-
tory (see Section 1.3), preferably stored in the APIARY emwinent variable.

source.o Cause the loader to continue by loading the relocatablebbjele compiled
and assembled from source.c. Additional relocatable objes may be listed at
this point.

-LAPIARY/lib Cause the loader to add the direct&IARY/ib to the library search
path.

-lc Cause the loader to find the library archive libc.a on thealiprsearch path and
load all relocatable object files needed to satisfy extenefakences.

-lgcc Cause the loader to find the library archive libgcc.a on theaty search path
and load all relocatable object files needed to satisfy rateeferences.



2.1.4 Making a bootable image

Assuming that the executable object file was loaded with tlopgr arrangement to
become a bootable image file, the actual bootable image filtuced by Bimg. The
recommended command line is as follows:

Bimg source.out
The arguments are interpreted as follows:
source.out This is the executable object file.

The resulting bootable image filessurce.img

2.2 Startup code

The startup code prepares the C execution environment. ntacts the executable
entry pointmain and has the responsibilities of (1) initializing the assue® register
zero , (2) initializing the stack pointer registsp, and then (3) calling the C language
main subroutinenain with no parameters. Software register usage is described in
Section C.1.

Since many arrangements for booting programs requiretiegtriogram start exe-
cution at the first word loaded, it is also convenient for tfaetsp code to be loaded first
so that the executable entry pomain occurs in the correct place. Such an arrange-
ment permits the C language main subroutine to appear amgvitenemory, Note
that C language global symbol names are prefixed with an sodex () in assembly
code. Thus the C language main subroutine can be distingaifsbm the executable
start address.

The recommended startup code modhdse.o sets up a small stack which should
suffice for simple programs. However, an alternate startodute may be provided.
The Apiary library includes the following startup code dfijéles:

APIARY/lib/base.o Includes a 200 word stack in the data segment.

APIARY/lib/basehs.o Initializes the stack pointer taxfffffffc ,whichis the high-
est word address in data memory.

APIARY/lib/basemc.o Multicore startup code. Includes an array of 16 stacks in the
data segment, each 256 words long and aligned on a cacheolimalary. Ini-
tializes the stack pointer to the top of the stack correspmio the current core.
Note that since global variables are in general not aligmedazhe line bound-
aries they are problematic to use in multicore programmnsirg;e flushing one
variable may overwrite others with stale data.



Chapter 3

Assembler - Bas

Bas is a relocating assembler for Beehive [1] version 2. Tis&uction set is sum-
marized in Appendix A. Bas reads one or more assembler sdilzseand writes a
relocatable object file and, if requested, a listing file. Térenat of the object file is
described in Appendix B.

3.1 Running Bas

Bas is invoked using the command line
Bas [options] sourcea.s sourceb.s ...
Options start with a hypen §. The following options are supported:

-oout Useout as the file name for the relocatable output file. Note therespaxe
between -0 anadut The default is to use name of the first input file with its
extension replaced witlo

-Ist Ist Uselst as the file name for the listing file. Note there is a space bertwist
andlst. The default is to omit the listing file.

-x Automatically define all otherwise undefined symbols as redereferences to
global symbols.

-ldir Add the directorydir to the list of directories searched for include files. Note
there is no space between -1 aid.

-codebase=nSet the base of the default code segment to word indexn, where
n is a hexadecimal number. The default is 0. Note that this ism\wndex, so it
is unaffected by address rotation. The loader typicallynges the base during
relocation, so the base given to Bas really only has sigmifiedor the listing
file.

-database=n Set the base of the default data segmédata to word indexn, where
n is a hexadecimal number. The default is 0. Note that this ismwndex, so it



is unaffected by address rotation. The loader typicallynges the base during
relocation, so the base given to Bas really only has sigmifiedor the listing
file.

-coderota=n Set the rotation of code addressesitavheren is a hexadecimal num-
ber. The default is 0, which produces a word-addressedtaothie for code
addresses. The code address rotation controls how cuoeatidn advances in
all code segments.

-datarota=n Set the rotation of data segment addresses ¥cheren is a hexadecimal
number. The default is 0, which produces a word-addressditecture for data
addresses. The data address rotation controls how thentiocation advances
in all data segments and in the absolute segment.

Although any extension may be used for the assembler solesgtfie extensioras

is recommended for user-written source files. Multiple setiles are concatenated to
form a single input source program. The following extensiare recommended for
the output files:

st the listing file
.0 the object file

3.2 Source format

The assembler source files consist of comments, label defigjtsymbol definitions,
instructions, and directives. Generally each source lm&ains zero or more label
definitions and, optionally, an equate definition or an asdenstatement. However,
multiple logical lines can be placed on the same physicallhiyn separating them with
semicolons.

3.3 Comments

An end-of-line comment starts with and goes up to the end of the line. A multiline
comment starts witth» and ends with a matching and may be nested. Comments
are treated as white space.

/I this is an end-of-line comment

/ * this is a multiline comment
[+ which may be nested */ */

3.4 Identifiers, numbers, and strings

A word is a non-empty sequence of alphabetic charactergsdig, and “.". An
identifier is a word that does not start with a digit. An idégtfithat starts with “.” is
special as explained later. A number is a word that starts aviigit. As in C, if the
number starts with “Ox” it is interpreted in hexadecimaherwise if it starts with “0”
it is interpreted in octal, otherwise it is interpreted ircoheal.



+ positive
- negative
~ bit complement
$ register number

Table 3.1: Prefix operators

+  addition

- subtraction
| bit or

& bitand

- bit xor

* multiplication

/ unsigned division

%  unsigned remainder

RORrotate right

ROL rotate left

LSR logical shift right

LSL logical shift left

ASR arithmetic shift right

ASL arithmetic shift left (same as LSL)

Table 3.2: Infix operators

A string is enclosed in double quoté's) @nd has the usual escapes using backslash
(\)asin C. A string can span multiple lines. Escaping the mefirevents the newline
from being part of the string. A string of up to four charastean be used as a con-
stant in an expression. The first character defines the loer@idht bits, the second
character (if any) the next eight bits, and so on, with antpiedr bits being defined as
Zero.

3.5 EXxpressions

Words can be combined into expressions using parenthesfss pperators, and infix
operators. Prefix operators have precedence over infix psraFor simplicity, all
infix operators have the same precedence and associateléftifi@ble 3.1 shows the
prefix operators and Table 3.2 the infix operators. Note tinafrifix operators ROR,
ROL, and so on are reserved words in the grammar. Althoughfixeoperator ASL
is provided for completeness, it is the same as LSL.

As explained in Section 3.7, expressions compute valuesaods have types. In
most cases the arguments of operators must be absolute rmumbe

10



3.6 Reqgisters

Ordinary registers are specified via register numbers usieglollar sign $) prefix
operator. The ordinary registers &8, $1, $2, etc. You can also write expressions
such asb(3+4) but this is probably not very useful. An identifier mag defined as an
ordinary register.

Special registers are specified via the following predefidedtifiers:

pc the program counter register, read via Ra overload 31
link the link register, read via Ra overload 30

rq the read queue register, read via Ra overload 29

wq the write queue register, written via Rw overload 31

Bas ensures that ordinary registers and special registeusad only in their proper
places. For example, Bas checks thal is not specified for Ra, which would not work
because of Ra overloading.

3.7 Values and types

Expressions compute values and values have types.

The simplest type is ambsolute numbesuch as 0, 1, 2, etc. Strings that are used as
constants in an expression are also considered to be absolotbers. Absolute num-
bers can be combined in an expression using any of the atitherel bit operators.

Another type is aegister number A register number is obtained by applying the
prefix register number operatd®)(to an absolute number. Each of the special registers
is also its own type. Register numbers and special regiséansot be further combined
in an expression.

A relocatable offseis another class of types. Examples of these types are ®ffset
in a segment and offsets from an external reference to alggh@ol. Each different
basis of relocation gives rise to a unique type. So, for exangifsets in one code
segment are one type, offsets in another code segment acerdsiype, offsets in a
data segment are a third type, and offsets from a particutermal symbol are yet a
fourth type. Two relocatable offsets can be subtracted fsomanother, producing an
absolute number, provided that the offsets are of the sape #n absolute number
can be added or subtracted from a relocatable offset witbtki®us result.

The final type is theexprpatch An exprpatch is a symbolic expression tree in
which the leaves are absolute numbers and relocatablesfisel the operators are
addition, subtraction, bitwise inclusive or, bitwise aleand rotation. The exprpatch is
the general type that is handled by the relocating loadese@®e that absolute numbers
and relocatable offsets can be promoted trivially into papches.

Bas constructs an exprpatch as its internal representdtimw to convey informa-
tion from “long_ld” and similar instructions to the loader. Another operateailable
in the exprpatch is “mbz”, which is a loader-checked asserthat certain bits in a
symbolic value must be zero. Bas uses the mbz operation teegamformation from
the “xli” instruction to the loader.

11



Unfortunately, Bas currently does not permit the user tostroict an exprpatch as
the result of an expression. This deficiency will be fixed whiere permits.

3.8 Label definitions

A label definition consists of an identifier followed by a colo
identifier: I a label definition

The identifier is assigned the address of the current latatote that the current
location can be a relocatable offset in a segment or an desediue.

Multiple label definitions may appear at the start of a linayAjiven identifier can
be defined at most once.

3.9 Equate definitions

An equate definition consists of an identifier followed by auas sign €) followed
by an expression followed by the end of the line. Any identfigsed in the expression
must be defined earlier in the input source.

identifier = expression /I an equate definition

The identifier is assigned the value of the expression. N@tevialues come in various
types. A value can be an absolute number, a relocatable,odfsegister number, or
one of the special registers.

3.10 Instructions

An instruction consists of an opcode followed by a commeaagzted list of arguments:
opcode arg,arg,arg,. ..

Each argument is an expression. The opcode defines a seima@tition with a given
number of arguments that is to be assembled into a certairb@unf machine in-
structions. Most opcodes assemble into one instructioralfatv assemble into two
instructions. The assembled instructions are emittedtirga@urrent segment.

Although lexically an opcode is an identifier, it is not in theme namespace as
predefined and user defined identifiers. Opcodes are novessenrds. The various
classes of instructions are described next.

3.10.1 Basic functions

The Beehive CPU supports eight basic arithmetic and logiceitions which are spec-
ified via opcodes as follows:

12



add w,ab //w=at+b
sub wab /w=a b
or w,ab //fw=a b
orn wab//w=ag"~ b
and w,ab //w=a&b
andn w,a,b //w=a&" b
xor wab //lw=da b
xorn wab //fw=a"~ b

Each of the arguments is an expression that specifies a \vafoll@awvs:

w a register number or a special registey or link .
a aregister number or a special regigterlink , orrq.
b a register number or an absolute numbedxfff

The instruction assembles into a machine instruction usiagNOSHIFT op in order
to permit the widest range of constants.

3.10.2 Basic function with address queue pushes

The Beehive CPU has machine instructions that push thet efsaly of the eight basic
functions onto the address queue in addition to writing ith® destination register.
These machine instructions are specified by opcode fandiéesed from each of the
basic function opcodes. For simplicity, we show only the agje family for “add”.
Analogous families exist for each of the other basic funtio

agr _add w,a,b //ag=w =a+ b (memory read)
agw_add w,a,b //agw=w =a+ b (memory write)

Each of the arguments is an expression that specifies a \vafol@ws:

w a register number or a special registay or link .
a aregister number or a special regigterlink , orrq.
b aregister number or an absolute numbe®xfff

3.10.3 Basic function with shifts

The Beehive CPU has machine instructions that apply anrarpishift of any of five
types to the result of any of the eight basic functions. Theaehine instructions are
specified by opcode families derived from each of the basictfan opcodes. For
simplicity, we show only the opcode family for “add”. Analogs families exist for
each of the other basic functions.

add ror w,a,b,s //w=(a+ b) rotate right s

add rol w,a,b,s //w=(a+ b) rotate left s

add Isr w,a,b,s //w=(a+ b) logical shift right s
add Isl w,a,b,s //w=(a+ b) logical shift left s

add _asr w,a,b,s // w=(a+ b) arithmetic shift right s

Each of the arguments is an expression that specifies a \vafo@wvs:
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w a register number or a special registay or link .

a aregister number or a special regigterlink , orrq.
b aregister number or an absolute numbedx7f

s an absolute number 0..31.

Note that the permissible range of absolute numbers in aggtitnis reduced consid-
erably because of the necessity to specify a shift count.

The Beehive CPU version 2 omitstate leftsince it is redundant wittotate right
Therefore Bas assemblegate lefts asrotate right32 — s.

3.10.4 Basic function with jumps

The Beehive CPU has machine instructions that conditipnathp to an address which
is the result of any of the eight basic functions. These nmeimistructions are specified
by opcode families derived from each of the basic functiocogies. For simplicity, we
show only the opcode family for “add”. Analogous familiess#xor each of the other
basic functions.

call _add a,b //link = nextpc; goto (& b)
j -add a,b // goto (at b)

jz _add a,b //if (ZERO) goto (a- b)
jm _add a,b //if (MINUS) goto (a+ b)
jc _add a,b //if (CARRY) goto (a+ b)
jnz ;add a,b //if (IZERO) goto (a+ b)
jnm_add a,b //if (IMINUS) goto (a+ b)
jnc ;add a,b //if (ICARRY) goto (at+ b)
jO _add a,b //class 1jumpO

j1 _add a,b //class 1jumpl

j2 _add a,b //class 1jump2

j3 _add a,b //class 1 jump 3

j4 _add a,b //class 1 jump 4

j5 _add a,b //class 1jump5

j6 _add a,b //class 1jump 6

j7 _add a,b //class 1jump7

Each of the arguments is an expression that specifies a \vafo@awvs:

a aregister number or a special regigterlink , orrq.
b aregister number or an absolute numbedx1ffff

3.10.5 Class 1 jump instructions

The Beehive CPU class 1 jump instructions are interpretesip@gial function units
and generally they do not actually jump, although they feAtiJ operands in the
normal way, which may include pulling a word from the read ugie To assist in
specifying class 1 jump instructions that may have an udsduecture, Bas provides
special opcodes. The following opcodes put “w” into the lowder four bits of the Rw
field, and O into the Ra, Rb, Count, Const, and Fun fields:
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jOow w //class 1jumpO
jlw w //class 1 jump 1
j2w w // class 1 jump 2
3w w //class 1jump 3
jdw w [/ class 1 jump 4
5w w //class 1jump5
jéw w //class 1 jump 6
j7w w // class 1 jump 7

Each of the arguments is an expression that specifies a \vafo@wvs:
w an absolute numbé..15

The following opcodes put “x” into the Fun field and assemlgéds ALU argument
a and “b” as ALU argument b:

jox  x,a,b /[ class 1 jump O
jIx x,a,b //class 1jump 1
j2x  x,a,b // class 1 jump 2
j3x x,a,b //class 1 jump 3
j4x  x,a,b Il class 1 jump 4
j5x  x,a,b //class 1jump5
j6x  x,a,b //class 1 jump 6
j7x x,a,b /lclass 1jump 7

Each of the arguments is an expression that specifies a \vafoi@ws:

X an absolute numbéx.7 .
a aregister number or a special regigterlink , orrq.
b aregister number or an absolute numbe®x1ffff

3.10.6 Synthesized loads

It may be observed that the Beehive CPU lacks instructicatddlad one register from
another or from a constant. However, in many cases the desfiiect can be obtained
by employing a proper selection of ALU function and argunsefthis is particularly
effective if some register can be assumed to contain a ugaliué such as, for exam-
ple, zero. See the .assume directive for how to tell the astserabout an assumed
value. Bas provides the following synthesized load opctiiEisassemble into a single
machine instruction:

Id wf /fw=f
agr Id w(f /lagr=w =f(memory read)
agw.ld w,(f //agw=w =f(memory write)

ror w,f,s // w= frotate right s

rol w,f,s // w= frotate left s

Isr w,f,s // w= flogical shift right s

Isl w,f,s // w= flogical shift left s

asr w,f,s // w= f arithmetic shift right s
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Each of the arguments is an expression that specifies a \vafoi@ws:

w a register number or a special registay or link .

f a register number; a special regisfar, link, or rq; the absolute numbe® or
Oxffffffff ; or any constant offset up to plus or mindisfff  (only Ox7f
in the case of the shift opcodes) from an assumed registee val

s an absolute numbér..31

Note that specifying a register number $29, $30, or$31 in argument f requires
having an assumed zero register in order to get around Réadsr Note that special
registerpc always has an assumed value.

The Beehive CPU version 2 omitstate leftsince it is redundant wittotate right
Therefore Bas assemblegate lefts asrotate right32 — s.

3.10.7 Synthesized jumps

As in the case of synthesized loads, Bas provides the fatigwynthesized jump op-
codes that assemble into a single machine instruction:

call f //link = nextpc; goto f
] f // goto f

jz f Ilif (ZERO) goto f

jm f //if (MINUS) goto f

jc f /I if (CARRY) goto f
jnz  f /l'if ('ZERO) goto f
jnm  f //if (MINUS) goto f
jnc  f /lif {CARRY) goto f
j0 f // class 1 jump 0 alu=f
j1 f // class 1 jump 1 alu=f
j2 f // class 1 jump 2 alu=f
i3 f // class 1 jump 3 alu=f
j4 f // class 1 jump 4 alu=f
i5 f // class 1 jump 5 alu=f
j6 f // class 1 jump 6 alu=f
i7 f // class 1 jump 7 alu=f

The argument f is an expression that specifies a value asvillo

f a register number; a special regisfar, link, or rq; the absolute numbe® or
Oxffffffff ; or any constant offset up to plus or min0s1ffff ~ from an
assumed register value.

Note that specifying a register number $29, $30, or$31 in argument f requires
having an assumed zero register in order to get around R&adst Note that special
registerpc always has an assumed value. This is particularly usefuhéncese of
synthesized jumps.

For the class 1 jumps, these instructions assemble to peddascthe output of the
ALU, just like a normal jump would do. This may or may not be wiau want.
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3.10.8 Load link immediate

The Beehive CPU has a “load link immediate” instruction tloaids thelink register
with any constant whose low order four bits are zero:

[li i /llink =i
x_li x //link = x

The argument is an expression that specifies a value as fllow

i an absolute number whose low order four bits are zero.
X arelocatable offset. The loader will verify that the low erdour bits are zero.

Thex_lli instruction can be used to get the address of a table intbrtkeegister
provided that the table is properly aligned in memory, fareple by using aralign
16 directive.

3.10.9 Synthesized long loads

Any 32-bit value can be loaded into a register by using a “loddimmediate” instruc-
tion to place the high order 28 bits in thek register followed by an “or” instruction to
combine it with the low order 4 bits. Bas provides the folloggopcodes that assemble
to this sequence:

long _Id w,k //w=k
agr Jdong Id wk //agr=w =k (memory read)
agw_long Id wk // agw=w = k (memory write)

Each of the arguments is an expression that specifies a \vafo@awvs:
w a register number or a special registey or link .
k any absolute number or relocatable offset.

3.10.10 Synthesized long jumps

Since the “load link immediate” instruction does not affdwt condition codes, it can
be used as a prefix to a conditional jump in order to jump camthdly to an arbi-
trary address. Bas provides the following synthesized |Jangps that assemble into a
sequence of two machine instructions:
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long _call k //link = nextpc; goto k
long j k // goto k

long jz k //if (ZERO) goto k
long jm k //if (MINUS) goto k
long jc k //if (CARRY) goto k
long jnz  k //if (IZERO) goto k
long _jnm k //if (IMINUS) goto k
long _jnc  k //if ({ICARRY) goto k
long _jO k // class 1 jump 0 alu=k
long j1 k // class 1 jump 1 alu=k
long j2 k // class 1 jump 2 alu=k
long j3 k // class 1 jump 3 alu=k
long _j4 k // class 1 jump 4 alu=k
long _j5 k // class 1 jump 5 alu=k
long _j6 k // class 1 jump 6 alu=k
long j7 k // class 1 jump 7 alu=k

The argumentk is an expression that specifies a value asviollo
k any absolute number or relocatable offset.

For the class 1 jumps, these instructions assemble to peddas the output of the
ALU, just like a normal jump would do. This may or may not be wiau want.

3.10.11 Simulator control

Bas provides the following instruction as a run-time ireed to the simulator:
simctrl s // simulator control s

The argument s is an expression that specifies a value ag/$ollo

s an absolute number 0..31.

This instruction assembles as Rw=0, Ra=0, Rb=0, constxMtes, Fun=0R, Op=NOSHIFT.
Observe that in the Beehive CPU architecture this is eqeitdb

or $0%$0,%0

because the count field is irrelevant in such an instructidowever, the simulator
notices this instruction and takes special actions basesl o8ee Section 5.5 for a
discussion of the simulator controls.

3.11 Directives

A directive consists of an opcode possibly followed by somrguments. Although
lexically an opcode is an identifier, it is not in the same nspaee as predefined and
user defined identifiers. In order to make clear which opc@desnstructions and
which are directives, directive opcodes start with a periblde various directives are
described next.
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3.11.1 Segment selection directives

Bas implements three kinds of segments: code, data, antugsGode segments are
intended to contain code and data segments are intendedt@ircdata. An absolute
segment is intended to provide for the layout of data withadefining its contents.
Labels get the kind of the segment in which they are definecerd’ban be multiple
code segments and multiple data segments. There is onlybsoduée segment. The
code address rotation controls how the current locatiom@acks in code segments.
The data address rotation controls how the current locatitvances in data segments
and in the absolute segment. Assembled instructions ardveaids can be emitted
into code segments and data segments regardless of theflkimelsegment. However,
nothing can be emitted into the absolute segment.
The general directive for changing the current segmentis:

.section n,s // switch to segmemtcharacteristics
.section n,s,b // switch to segmentcharacteristics optionb

The arguments are as follows:

n an identifier that is the name of the new segment.
s a string that defines characteristics of the new segment.
b an identifier giving an additional option.

The strings is interpreted character-by-character and each chargpéeaifies a
characteristic as follows:

a all labels in this segment should be retained for debugging.
w segmentis writable.

X segment is executable.

s segmentis small.

S segment contains strings.

T segment is thread-local storage.

Characteristics other than “x” are ignored by Bas. Bas prts characteristic “x” to
specify a code segment. The absence of “x” specifies a dataeseg
The optional argumertit specifies options as follows:

@nobits the segment contains no initialized contents.
@progbits the segment may contain content.

The @nobits option is used, for example, to specifyliss segment. The option is
ignored by Bas.

When changing the current segment, if the new named segrestribt already
exist it is created. Otherwise, Bas merely switches to tligtiag segment and extends
it.

The following abbreviated directives can be used to chamdfes default code and
data segments:

.code /I switch to default code segmeigxt
.data /I switch to default data segmenlata
.bss /l switch to secondary data segmedugs
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Finally, the following directive changes to the absolutgrsent:
.abs i /I switch to absolute segment location i
The argumenti is an expression that specifies a value asvillo
i any absolute number.

The absolute segment does not have a name. Although wordstda@ emitted into
the absolute segment, its current location can be advaitésimakes it convenient to
define absolute labels in laying out a structure.

3.11.2 Advance current location directives
The following directive advances the current location witthe current segment:

.blkw i // advance current location by i * step
.blkb i // advance current location by i bytes

The argumenti is an expression that specifies a value asvillo
i any absolute number.

.blkw advances by a number of words and .blkb by a number @byt

The treatment of .blkb depends on the current segment’s dfejhe step is 4,
implying a byte-addressed segment, .blkb advances therguocation by i. If the
step is 1, implying a word-addressed segment, .blkb adgaheecurrent location by
(i +3) /4, which is the number of words it would take to store/ids.

3.11.3 Align current location directives

The following directives advance the current location witthe current segment, if
necessary, until it has a specified alignment:

.align i /[ advance current location until itis O mod i
.alignw i // advance current location until it is 0 mod (i * step)

The argumenti is an expression that specifies a value asvillo
i any absolute number that is a power of two

Note that the current location need not be on a word boundagnwurrent segment’s
step is 4. This can result from use of the .abs, .blkb, .bgteng, or .ascii directives,
for example. The .align directive is used to reestablishsireé alignment.

3.11.4 Emit words or bytes directives

The following directives emit words or bytes into the cutreegment:
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word  kkkK,... /[ emitwords

long k,k,k,... // alias for .word

.byte k,k,k,... [/ emit bytes

2byte  k,kk,... /[ emit bytes in chunks of 2
3byte  k,kk,... /[ emit bytes in chunks of 3
Abyte  kkk,... /[ emit bytes in chunks of 4
.short  k,kk,... //alias for .2byte

Each of the arguments k is an expression that specifies a aalfodiows:
k any absolute number or relocatable offset.

Multiple arguments separated by commas may be specified.

Emitting bytes gets very special treatment from the assembhe “.byte” direc-
tive emits one byte for each argument, the “.2byte” directwmits two bytes for each
argument, the “.3byte” directive emits three bytes for emgument, and the “.4byte”
directive emits four bytes for each argument. The emitte@oare taken from the
argument value starting with its least significant byte. urgnt values that require
relocationare permitted Any part of the argument value that is not emitted is just
ignored.

If the current segment’s step is 4, meaning that it is a bytdr@ssed segment, each
byte is emitted at a consecutively higher byte address gpigba might expect. How-
ever, if the current segment’s step is 1, meaning that it ioedvaddressed segment,
the assembler groups the sequence of bytes into chunks mfaiwanges each chunk
into a word value, and emits the chunks into successive words

Note that “.4byte” is not the same as “.word” because the &remits four bytes
per argument regardless of where the word boundary fallereds the latter always
checks for word alignment.

If you want to know why | had to implement all these crazy diress, gcc uses
them when writing debugging information. Emitting bytewas that require relocation
can generate many relocation patches in the output file.

3.11.5 Emit string directives

The following directives emit a string into the current segm

.ascii z // emit string
.string z /l emit string with null terminator

The argument z is a string of any length. The characters irstitey are emitted in
order effectively using .byte directives. In the case afngtan additional zero byte is
emitted at the end.

3.11.6 Region nesting directives

Bas maintains a current region name as it processes theesiogpnat. Any identifier
that starts with a “.” (except for “.” itself) is implicitly gefixed by the current region
name. This permits labels and symbols to be abbreviatetlyana region. Regions

can be nested.
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.enter  name // enter region
leave name //leave region

The argument name is an identifier that is used to name therredlote that if this
identifier starts with “.” it will itself be subject to the intipit prefix transformation. To
make this work with nested regions, in both .enter and .I¢las@rgument belongs to
the enclosing region.

Opcodes are immune to the implicit prefix transformation.

3.11.7 Assume register directives

The utility of the opcodes that synthesize instructions@atly enhanced if some reg-
isters can be assumed to contain a known value, for exangte, Zhis is specified by
the following directives:

.assume r.k /I henceforth assumerk
.noassume r /] henceforth contents of r is unknown

Each of the arguments is an expression that specifies a \vafoi@ws:

r aregister number.
k any absolute number or relocatable offset.

The .assume applies to all subsequent source input lingésamtelled by a .noassume.

3.11.8 Global symbol directive

A symbol is declared as global using the global symbol divect
.globl  n // declare symbol n as global

If the symbol is defined in the current assembly, then its nantedefinition is made

available to the relocating loaded to bind external refeesn The definition must be an
absolute number or a relocatable offset. If the symbol isdefined in the current as-
sembly, then it signifies an external reference to a global®}. The-x option causes

all otherwise undefined symbols to be declared as globadssrthey are specifically
declared as local.

3.11.9 Local symbol directive

A symbol is declared as local using the local symbol directiv
Jdocal n //declare symbol n as local

The purpose of declaring a symbol as local is to override tiesymption of thex
option with regard to a common request.

22



3.11.10 Common request directive

A symbol is requested to be defined as the base address of acroarea using the
common request directive:

.comm n,s,a // requesta common area

The common request directive requests that the symbol “ndéfined as the base
address of a common area of size “s” bytes with alignmentTa®& common area will
be of kind “data” with the same address rotation as the dajmert. The alignment
“a” may be omitted, which case it defaults to the step of thea dagment.

If the symbol “n” is declared as local, then this is a local coom request, and it
will be satisified by allocating space at the end of the daganemt. The definition of
“n” will be local and no other object file will be able to see it.

Otherwise, if the symbol “n” is declared as global, then fkig global common
request. Global common requests of the same symbol madeeatiffobject files are
combined into a single request by taking the maximum of tiy@ested sizes and the
maximum of the alignment requirements.

3.11.11 Include directive
A file can be incorporated into the source stream using thHadedirective:
.include z /l include file “z” at this point

This file name z is a string. Each of the specified directori@sabude files is searched
in order to find the indicated include file. Thie option is used to specify an include
file directory.

3.11.12 Commentary directives

The gcc compiler emits various directives related to demgygFor the present, the
following directives are ignored:

.Size n,k // declare size of symbol n to be k
type n,... // declare type of symboln

file S /I file name s

ident s /I compiler identification s

3.12 Predefined symbols

Bas manages a collection of predefined symbols. Some of #yaskols have values
that change as assembly progresses (which is not possitlsdo defined symbols).
The predefined symbols are as follows:

pc the program counter special register, read via Ra overltad 3
link the link special register, read via Ra overload 30 and wriia Rw overload 30
rq the read queue special register, read via Ra overload 29
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wg the write queue special register, written via Rw overload 31

. the current location in the current segment

code.rota the code segment address rotation (an absolute number)
data.rota the data segment address rotation (an absolute number)
code.stepaddress offset between words in the code segment (an absaiotber)
data.step address offset between words in the data segment (an absoiotber)
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Chapter 4
Utilities

Various utility tools manipulate relocatable object fil&$he archiver collects relocat-
able object files into a library archive. The loader bindecatable object files into
an executable object file. The image maker converts an exaleubbject file into a

binary memory image. The Virtex mem file maker convers an @edde object file

into Virtex mem files. There is also a utility to process a filégtes into C source that
can then be compiled into a relocatable object file. Thediéegiare described next.
The format of the object files is described in Appendix B.

4.1 Archiver - Bar

Bar combines a number of relocatable object files into atjbaachive. Bar is invoked
using the command line

Bar command archive.a modulea.o moduleb.o ...

Bar adds the modules to the archive, creating the archiudffimecessary. The com-
mand is a string of characters, each of which is interpret¢pasately. The following
command characters are supported:

r (“Replace”) Add new modules to the end of the archive, detetiny existing ones
with the same names.

g (So-called “quick™ Add new modules to the end of the archivighout deleting any
existing ones that might have the same names.

c (“Create”) Expect to create the archive. The archive is gbvareated if it does
not already exist, but a warning is issued in such a caseuthesscommand is
specified.

v (“Verbose”) Give additional commentary on the actions take

Exactly one of “r" or “q” must be given. Any number of relochta object files may
be provided as input. You can also provide an archive as jimputhich case all of the
relocatable object files it contains are added to the ardigugg constructed.
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The command line format conforms to that of the gnu archigehat the gnu tool
chains can use it.

4.2 Loader -Bld

Bld is a relocating loader. Bld reads a number of relocatabject files and archive
files, resolves external symbol references, concatenates-samed segments, and
outputs an executable object file. The format of the objeeti§ldescribed in Ap-
pendix B.

Bld is invoked using the command line

Bld [options] module.o library.a ...

Any number of relocatable object files and library archivedfinay be provided. The
files are incorporated into the final executable in the ordewhich they appear on
the command line. If the file is a relocatable object file, iinsorporated without
further ado. If the file is a library archive file, its consént object files are scanned
to determine if any satisfies an external symbol referendeiéso, that object file is
incorporated. If any object file is incorporated from a lityrarchive, the archive is
rescanned to see if additional object files need to be incated.

Options start with a hypen §. The following options control relocation and are
processed in the order they appear on the command line:

-codebasen Specify that code segments will be relocated to start at mgmvord
indexn (in hex). If there are multiple code segments, they are edéatin suc-
cession to start at the memory word index after the preworedbcated code
segment, in the order in which they are encountered as ths filgs are pro-
cessed. Note that the memory word index is independent sitpement address
rotation.

-databases Specify that data segments will be relocated to start at mgrvord
indexn (in hex). If there are multiple data segments, they are egéatin suc-
cession to start at the memory word index after the preworedbcated data
segment, in the order in which they are encountered as ths filgs are pro-
cessed. Note that the memory word index is independent sitement address
rotation.

-codefloat Specify that the code segments will be relocated to startaraory word
index after the previously specified kind of segment (if any)

-datafloat Specify that the data segments will be relocated to starnamory word
index after the previously specified kind of segment (if any)

The following options specify the name of various outpusfile
-0 a.out Specify that the output executable object file will be naraguit

-map a.map Create a map fila.maplisting the base word index and size of segments
and the definitions of global symbols.
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The following options control the loading of libraries. hean occur anywhere in the
command line and are processed in order with other files tiedbaded.

-Ldir Add dir to the library search path.

-Ixxx Find the library archive fildibxxx.aon the library search path and load it as
described above.

The following options control howommorsymbols are processed. A common symbol
is created with acomm assembler directive or with an uninitialized global norieex
variable declaration in C. Common symbols are weird in thaltiie object files may
declare them. The multiple declarations are combined bngatke largest length and
most restrictive alignment requirement.

-commbss Specify that common symbols should be allocated in.lbiss segment.
This is the default.

-nocommbss Specify that common symbols should be allocated by creatisgecial
data segment for each one. The segment is named by prefoamgm-" to the
name of the common symbol. This is the way the loader used th.wo

The following options control how debugging segments ame@ssed. When GCC
is given the-g option it generates debugging information into data sedgsnehose
names start with.tlebug _". Such segments are called debugging segments.

-debugsegSpecify that debugging segments should be changed to hatédebug”,
which causes them to be relocated separately from code aadeigments and,
more significantlynotto appear in the memory image created by Bimg or Bsim.
This is the default.

-nodebugsegSpecify that debugging segments should be left as data segmnikEhis
is the way Bld used to work.

4.3 Image maker - Bimg

Bimg is the image maker. Bimg reads an executable objectfilestructs a memory
image by applying all specified patches, and outputs thdtraswa binary memory
image file. The binary image file contains a consecutive rafiggemory words, start-
ing with the word at the lowest memory word index loaded byekecutable object
file and continuing through the highest memory word indexi&zhby the executable
object file.
Bimg is invoked using the command line

Bimg [options] a.out
One executable object fila.outis expected. Options start with a hypen).( The
following options are provided:

-img a.img Specify that the output binary memory image file will be nanagidhg
instead of the default, which is to take the name of the ingatetable object
file and replace the extension witimg
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4.4 Virtex mem file maker - Bvmem

Bvmem makes Virtex mem files that can be used to initializecdehe memory of
a Beehive design. Bvmem reads an executable object file froots separate code
and data memory images by applying all specified patchespatpdits the results in
Virtex mem file format. Each resulting Virtex mem file contia consecutive range
of memory words starting with word index zero and continuimgpugh the last word
loaded by the object file into that memory image. The formathese mem files is
described in the Data2MEM Users Guide [2].

Note that the Beehive has separate code and data cachescdehehis initialized
to contents that appear to have been fetched from physicalbmyeword indexes zero
throughOx3ff . However, since the caches are separate, the initializegots of the
code and data caches are independent. The loader can edbathtthe code segment
and the data segment to start at word index zero, which isribygep arrangement for
constructing Virtex mem files.

Bvmem creates two Virtex mem files, one for code and one fa.daiven an input
file a.outby default the resulting code Virtex mem file is nansmbde.menand the
resulting data Virtex mem file is namediata.mem The extensionmem is required
by the Virtex tools.

Bvmem is invoked using the command line

Bvmem [options] a.out

One executable object fila.outis expected. Options start with a hypen).( The
following options are provided:

-mem b.mem Specify that the Virtex mem files will be nambdode.merandbdata.mem
instead of the default, which is to take the name of the ingatetable object
file and replace the extension witbde.mem anddata.mem

4.5 File of bytes processor - Bfiledata

Bfiledata takes a file of bytdde.datand produces a C source filee.cthat defines and
initializes two global symbolsfile andfile_.cnt A header filefile.his also produced
that contains external definitions for these symbols. Théaglsymbofile is defined

as an array of bytes and is initialized to the contents of tleeofi bytes. The global
symbolfile_cntis defined as an int and is initialized to the number of bytdhérarray.

Bfiledata is invoked using the command line

Bfiledata [options] file.dat
Options start with a hypen §. The following options are provided:

-c b.c Specify the name of the output C source file. The defadiles
-h b.h Specify the name of the output C header file. The defadilei$

-gbl b Specify the name of the global that is initialized to the wroé bytes. The
default isfile
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-cnt b_cnt Specify the name of the global that is initialized to the sikthe array. The
default isfile_cnt
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Chapter 5

Simulator - Bsim

Bsim is a simulator for Beehive [1]. Bsim reads an object fititjalizes a simulated
memory image, and then simulates Beehive instructionsnbégi at the address of
main . The format of the object file is described in Appendix B. Thadator imple-
ments the full physical memory space and a selectable nuailrarmal cores, each
with a full instruction set, instruction and data cachedyudeunit, and most of the
COpProcessors.

5.1 Running Bsim

Bsim is invoked using the command line
Bsim [options] program.out
Options start with a hypen §. The following options are supported:

-trace Turn on instruction trace mode before starting the simaitatinstruction trace
mode can also be turned on or off during simulation by usiegstmulator con-
trol instructions described in Section 3.10.11.

-debug Activate the interactive debugger on core 1. The interaatigbugger is de-
scribed in Section 5.6.

-ncore=n Set the number of normal cores#o The default is 1 normal core. Note
that all cores start execution at the same start addrelssr eiro if there are any
cache preload requests, or otherwise the global symiadh . Special startup
code must be used to allocate a separate properly-aligaekitst each core.

-megastepmaxs Set the maximum number of cycles that the simulator will exec
to n million. Note that this number is in millions. It takes thensilator about a
second per core to simulate a million cycles. The defaultwgh@h means no
limit.

-cachestat Print out cache statistics for each core and the end of stionolaThis is
the default.
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-nocachestatDo not print out cache statistics for each core and the enaflation.
-icache= file.mem Add icache core: file.mento the list of cache preload requests.
-icachefile.mem Add icache core @ile.mento the list of cache preload requests.
-dcache= file.mem Add dcache core file.mento the list of cache preload requests.

-dcachefile.mem Add dcache core flle.mento the list of cache preload requests.

5.2 Cache preload requests

The simulator supports preloading of instruction and datdes. This is requested by
the -icache and -dcache options. There may be more than gueste The requests are
processed in order, after the requested number of coreseleaisdoeated and physical
memory has been initialized.

Note that if there are any cache preload requests, the dionwidl start execution
of all cores at location zero. This corresponds to a resétdarhardware.

A cache preload request consists of (1) a specification ehiear dcache, (2) a
core number, and (3) afile. If the core number is zero it ispreged as applying to all
cores, otherwise the preload request applies only to thedtet core, if present. The
file is expected to be in vmem format such as created by Bvmem.

Preloading a cache initializes the contents of the cachiths specified data had
been fetched from addresses 0 through Oxfff. The cache diremarked as valid and
not dirty. The data is taken from the first 1024 words of the nfigen If the mem file
contains fewer words, it is padded with zeros.

As an example, the following command preloads core 1 withsted code and all
other cores with “slave” code:

Bsim -icache slave.mem -icache=1 master.mem program.out

5.3 Physical memory

The simulator implements the full physical memory spacex80®00000 words. How-
ever, actually trying to use the entire memory space witljjkcause the simulator to
exhaust its resources.

The simulator implements both the data cache and the ingtrucache. Unless
they have been preloaded, both caches are initially eypfimedlid.

Data accesses are performed more rapidly than in the hagdwspecially with
regard to taking cache misses. The simulator is not cycletexi¢h respect to data ac-
cesses. An attempt to access a nonexistent memory addoelsEps an error message.

The simulator supports all address rotation options. Tlde @nd data rotations are
specified in the object file.
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supported coprocessor
yes 0: ASLlI interface coprocessor (see Appendix A.6.2)

no 1: multiply coprocessor

no 2: miscellaneous output signal coprocessor
yes 3: data cache controller (see Appendix A.6.3)
yes 4: message controller (see Appendix A.6.4)
yes 5: lock controller (see Appendix A.6.5)

Table 5.1: Simulated coprocessors

5.4 Simulated coprocessors

Table 5.1 summarizes the simulation support for the variReehive coprocessors. At
the start of simulation, the cycle counter is set to zeroliradls in the data cache are
invalid, all receive message queues are empty, and no ctds &y lock.

The simulator connects the ASLI interface register to thesote. If the simulator
is not run from a console (for example, when run from insidesaracs shell), then
input is not possible due to deficiencies in Windows. In sucase output will happen
normally but it will appear that the receiver never has a pgésly to read.

The simulator counts cycles starting with zero at the bagmof the simulation.
A taken jump adds an extra cycle to account for the post juntigynieven though the
simulated memory system is fast, there may also be stallsodmemory access.

5.5 Simulator controls

The simulator takes special notice of any instruction witiak const=0 and Fun=0R.
After interpreting such an instruction, it interprets ttoaint field (which is unused in
this instruction by the Beehive CPU architecture) as a sppeointrol. See the simctrl
instruction in Section 3.10.11 for how to create such arrimsion in the assembler.
The controls are:

0 no operation

1 exit simulator (normal termination)

2 start tracing instructions onto the console output
3 stop tracing instructions

4 dump register file onto the console output

5 exit simulator (abnormal termination)

6-31 reserved

5.6 Interactive debugger

The simulator supports an interactive debugger attachedr® 1. The debugger is
activated using thedebug option. When active, the debugger breaks before the first
simulated instruction and accepts commands from the cemspiit. Simulation of all
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<cr> (empty line) run until break

[ implicit break on each instruction
S implicit break on new subroutine

g run without implicit breaks

dm addr count dumpcountwords of data memory
cm addr count dumpcountwords of code memory

r dump registers

trace y trace each instruction

trace n do not trace each instruction
q quit

h print help message

Table 5.2: Debugger commands

cores is frozen while the debugger is accepting commands.d€bugger commands
are summarized in Table 5.2. Each debugger command ocaupiaput line.

The debuggerinspects each instruction (on core 1) befmrexecuted. The debug-
ger can trace each instruction before execution or it care tifse instruction only when
it breaks. Tracing means that the debugger prints out threguprogram counter and
pending instruction in symbolic form. For example, theialibreak typically produces
a trace output such as

main+00000000: $27 = $27 ANDN $27

This means that the current program counter is at offsetrd fitmbal symbol “main”
and the pending instruction is an ANDN that stores zero iatpster 27.

Note that the instruction printed in an instruction tracenes from the physical
memory, as opposed to the code cache on core 1. This may berfittezlfuture.

The debugger gets symbol definitions from the input files. y@hbbal symbols
are considered. Symbols are classified as code symbolsasygatbols depending on
which kind of segment they are defined in. The debugger asstima¢ a subroutine
extends from one code symbol to the closest next one defireetigher address.

The debugger can perform an implicit break on each instvoair on each change
of subroutine. The execution of an exit-simulator instiurct(see Section 5.5 also
causes a break. Currently there is no provision for settirglopoints.

The debugger can dump words from code memory or from data myeiKote that
these printouts come from physical memory rather than floercbde and data caches
of core 1. This may be fixed in the future. The address to dumgt fmei specified in
hexadecimal. This may also be fixed in the future. The addsésterpreted according
to the relevant address rotation.
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Appendix A

Beehive architecture

The Beehive architecture is based on a 32-bit word. It hagiates file containing
32 registers, a two-input ALU followed by a full barrel sleift and an unusual queued
interface to a memory controller for access to data memodynaemory mapped 10.
Instruction space and data space may be considered astseparag execution of
pre-initialized cache contents. (The Beehive hardwareualdi] should be consulted
for further details.) In addition to the register file, thése program counter register,
a link register (for subroutine linkage and constant as$@mand a condition code
register. All instructions have the same format, as showigare A.1.

A.1 ALU function

Almost all instructions select two arguments, A and B, fa &LU, which performs a
function determined by the Function field:

0A+B
1A-B
2 A&B
3A&"B
4A|B
5A|" B
6 A" B
7A°" B

A.1.1 ALU argument A

Argument A is specified by the Ra field. In most cases, Ra seteotgister from the
register file. However, certain values of Ra are overloadéd.Ra overloads are:

29 the read queue (takes one word; stalls until read queue Emjpty)
30 the link register
31 the program counter register (address of the current ictsbn)
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Ra Rw Count Rb

TN TN TN TN [T T TN AN TN S N Y TN T T N N
31 27 26 2221 17 16 10

Function| Resv Op
Il Il Il Il

! !
8 6 5 4 3 0

©|Const

Figure A.1: Beehive instruction format

A.1.2 ALU argument B

When Const = 0, argument B is specified by the Rb field, whicbctela register from
the register file. Rb> 31 is reserved.

When Const = 1, argument B is generated as a constant asskefrite the in-
struction in a mode determined by the Op field. There are thredes: RbConst,
CountRbConst, and RwCountRbConst.

RbConst the constant is the Rb field (7 bits).

CountRbConst the constant is the concatenation of the Count and Rb fieRlbi(g).

RwCountRbConst the constant is the concatenation of Rw[3:0], Count, and &8
(16 bits). Note that in Beehive CPU version 2 the high ordeobthe Rw field
is not included in the constant.

In all cases the constant is padded on the left with Os to filttoe 32-bit word.

A.2 Major Operation

The Op field determines the constant mode, the shift modeyamaus major effects
of the instruction, as follows:

0 RbConst, logical shift right by Count bits, write result iR

1 RbConst, logical shift left by Count bits, write result in Rw

2 RbConst, rotate right by Count bits, write result in Rw

3 Load link immediate (see below)

4 RbConst, arithmetic shift right by Count bits, write resnlRw

5 CountRbConst, no shift, write result in Rw

6 CountRbConst, no shift, write result in Rw and into addrassug as a write com-
mand

7 CountRbConst, no shift, write result in Rw and into addrassug as a read com-
mand

8 RwCountRbConst, no shift, jump operation (see below)

9 RwCountRbConst, no shift, jump operation (see below)

10 RwCountRbConst, no shift, jump operation (see below)

11 RwCountRbConst, no shift, jump operation (see below)

12 RwCountRbConst, no shift, jump operation (see below)

13 RwCountRbConst, no shift, jump operation (see below)

14 RwCountRbConst, no shift, jump operation (see below)

15 RwCountRbConst, no shift, jump operation (see below)
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Rw[4] Op jump operation

0 8 call: link = nextpc, jump always
9  jump if minus
10 jumpif zero
11  jumpif carry
12 jump always
13 jump if not minus
14 jump if not zero
15 jumpif not carry
8 class1jumpO
9 class1ljumpl
10 class1jump?2
11 class1jump3
12 class1jump4
13 class1jump5
14 class 1 jump 6
15 class1jump?7

PRPRRPRPRPRPRRRPOOOOOOO

Table A.1: Jump operations

Many of the operations write the result of the shifter intgister Rw in the register
file. In these cases, if Rw = 31 the result is also written ihtowrite queue or if Rw =
30 the result is also written into the link register.

The load link immediate operation copies the instructido the link register, re-
placing the low order 4 bits with zero. All other effects (dition code update, queue
reads and writes, and register file writes) are suppressed.

The jump operations suppress condition code update, quetesyand register file
writes. (But notably a jump does not suppress queue readsisspossible to take a
subroutine return address from the read queue and jump to Beehive CPU version
2, the high order bit of the Rw field (Rw[4]) is not used for tlenstant and is instead
combined with the op field to specify the particular jump @tien. Table A.1 shows
the specifications.

The jumps are divided into class 0 jumps and class 1 jumpss@aumps are the
ordinary jumps, including call. Class 1 jumps are intenawedrfterpretation by special
function units and may do special things. At present, thg defined special function
unit is the debug unit (see Appendix A.5.1) which interpatéss 1 jump 7.

A.3 Condition codes

Condition codes are updated at the end of an instructioe¢srduppressed) and there-
fore always reflect the result of a previous instruction. dEyathose operations that
write the result of the shifter into Rw are those that updagedondition codes. The
result of the shifter determines ZERO and MINUS. The resfithe ALU function
determines CARRY, which is undefined except for ADD and SUB.
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A.4 Reserved

When Const = 0, ALU argument B is specified by the Rb field, wisielects a register
from the register file. Rb- 31 is reserved.

Except for the load link immediate instruction, the Reswffislreserved and must
always contain 0.

Class 1 jumps 0 through 6 are not at present defined and musénsted.

A.5 Special function units

The class 1 jumps 0 through 7 are interpreted by correspgrsgiecial function units 0
through 7. A class 1 jump instruction resembles a normal jursfpuction in that the A
and B arguments are fetched, which may include pulling a viranth the read queue,
and an ALU result is computed without modifying the conditmdes. However, the
special function unit may examine the instruction and capszial things to happen
to the Beehive CPU.

At present, the only special function unit 7 (the debug usitjefined.

A.5.1 Debug unit

The debug unit is designed to permit core 1 (called the mastex) to control and
debug the other Beehive CPU cores (called the slave coresh Beehive CPU core
has a debug unit, although the debug unit on core 1 is of itk

The debug unit maintains two state bitsnningandwantstop and two word reg-
isters,savedPCandsavedLink When a slave core takes a breakpoint or is stopped,
the PC is saved in savedPC, the link is saved in savedLinkjmgrand wantstop are
cleared, and the PC is set to zero. It is assumed that appteponde appears starting
at location zero that will save the CPU state in memory and tha&it for a command
from the master core.

The Beehive CPU state is complicated, consisting of registieies, the condition
codes, and the address, read, and write queues. In Beehivey&Bion 2, there is no
provision to save and restore the condition codes, the addresue, or the write queue.
Consequently, breakpoints can legally be inserted onlpattp where the address and
write queues are empty and the condition codes are immhteria

The debug unit interprets class 1 jump 7 instructions. THaudeunit disregards
the result of the ALU and examines the low-order three bithefregister b field in the
instruction to determine what special things to do, as fadlo

rb=0 This instruction has no effect, except possibly for pullmword from the read
queue.

rb=1 The link is loaded with the data address of a “savearea” ircvhiiis intended
that the Beehive CPU state for this core be saved. The savdata address for
core N is 0x4000 + 512 * N.

rb=2 The link is loaded with the contents of the debug unit's s@@degister.
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rb=3 The link is loaded with the contents of the debug unit's sausdregister.
rb=4 The link is loaded with 1 if the read queue is not empty, ané¢hWibtherwise.

rb=5 The link is loaded with 1 if the debug unit’s running bit is s&hd with 0 other-
wise.

rb=6 The savedPC register is loaded with PC+1, the savedLinktergs loaded with
link, the running bit is cleared, the wantstop bit is clea@d the PC is loaded
with 0. The instruction at location 0 should be a nop, becalugeto pipeline
issues the Beehive CPU does not guarantee that it will dgto@lexecuted.

rb=7 Not defined.

The debug unit also interprets control messages receivdtgter-core message con-
troller. As described in Appendix , control messages have werds of payload and
are interpreted immediately upon arrival, rather than ¢p@inqueued on the message
queue. The debug unit's control messages are as follows:

start This control message is sent by the master core (src=1) ypt0 and it causes
the debug unit to set the running bit. It is assumed that tbation zero code in
the slave core is looping waiting for the running bit to be sdtereupon it will
restore the CPU state from the savearea and resume norngatiexe

stop This control message is sent by the master core (src=1) ypitl. If running
is set, the debug unit will set the wantstop bit, otherwiszehwill be no effect.
As described below, the wantstop bit causes the debug umiaitoh program
execution and interruptit at a point where the address aitd qgueues are empty
and the condition codes are irrelevant.

kill This control message is sent by the master core (src=1) ype2. If running is
set, the debug unit willimmediately reset the address atitd ueues and force
an interruption of program execution, otherwise there hélino effect.

When the debug unit interrupts program execution, it clearsing and wantstop,
loads savedPC and savedLink from PC and link, and loads ACzefb. Note that the
savedPC is the PC of the first instruction not executed.

When wantstop is set, the debug unit examines the streanstofidtions executed
by the CPU looking for a legal place to interrupt. This happehen the address and
write queues are empty and the CPU is about to execute amdtistr that sets the
condition codes. Instead of executing this instructioa,@PU is interrupted.

A.6  Memory controller

The processor communicates with the memory controllethriget queues: the address
queue, the write queue, and the read queue.

The memory controller processes commands in order fromdHdesas queue. A
write command requires also a word from the write queue, wigcthen stored in
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0 cache alias line Wix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure A.2: Memory space address format

1 subselection coproc
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31 30 32 0

Figure A.3: Coprocessor space address format

the specified data address. A read command causes the woedfétched from the
specified data address and then placed in the read queue.

The processor accesses the write queue via an Rw overload tifge an instruc-
tion specifies an unsuppressed write of Rw=31, the result@shifter is placed onto
the write queue. If necessary, the processor stalls uetivtite queue is non-full.

The processor accesses the read queue via an Ra overloadine@en instruction
specifies an unsuppressed read of Ra=29, the value is takantlie read queue. If
necessary, the processor stalls until the read queue ismqry.

Access to the address queue is specified via the major operatie output of the
shifter is rotated right by the data segment’s addressiootaind the result is placed
onto the address queue along with the indication of whethier @ read command
or a write command. Note that the address queue always osntaird addresses,
regardless of the data segment’s address rotation.

In the Beehive CPU version 2, thereris hardware checko prevent the address
gueue from overflowing. If this happens the behavior is umeefi Hence it is the
software’s responsibility to avoid such a situation.

Note that some requests on the address queue may take art@tptcomplete.
The worst case is probably a complete data cache flush whetataeache is entirely
dirty. The only way the software can assure that the addressejis draining is by
issuing a read request and waiting for the read data to coriedrethe read queue.

A.6.1 Address queue value

Each value on the address queue refers either to memory gphea bit 31 is 0) or
coprocessor space (when bit 31 is 1). Note that the shifrtréhat the CPU has
to generate in order to create an address queue value depeitdls data segment’s
address rotation.

Figure A.2 shows the format of a memory space address quéue. véhe low
order three bits give the word index in a cache line. The nexts bits give the cache
line number in the data cache. The next 21 bits distinguiffieréint cache aliases.
Finally, bit 31 must be 0.

Figure A.3 shows the format of a coprocessor space addreseyalue. The low
order three bits select the specific coprocessor. The nekit2&re provided to the

39



undefined clock ethCore Core
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Figure A.4: ASLI interface register format

coprocessor for subselection. The coprocessor can usehkedion bits in any way
it wants. Finally, bit 31 must be 1.
The coprocessors numbers are defined as follows:

0 ASLI interface

1 multiply coprocessor

2 miscellaneous output signal controller
3 data cache controller

4 inter-core message controller

5 lock controller

6 undefined

7 undefined

A.6.2 ASLI interface

Coprocessor 0 is the ASLI interface. It contains two regsstan ASLI interface reg-
ister, subselected when address queue value bit 3 is 0, apdeaounter register,
subselected when address queue value bit 3 is 1. Theseeregist described next.
Figure A.4 shows the format of the ASLI interface register.
Reading the ASLI interface register gives the followingusta

clock the system clock speed in MHz

ethCore the core number of the EtherNet core
Core the core number of this core

Xmit 1 =the transmitter is ready for another byte
Recv 1 =the receiver has a byte ready to read
Byte the byte the receiver has ready, if any

The system clock speed for the BEE3 is 125 MHz and for the MLi5A®0 MHz. The
simulator claims a clock speed of 2 MHz, which is roughly aete. The core number
of a normal core is in the rande . . ethCore — 1.

Writing the ASLI interface register has the following effec

Xmit 1 = provide a byte to the transmitter, assuming it was ready
Recv 1 = acknowledge the byte from the receiver, assuming it wadyre
Byte the byte provided to the transmitter, if any

Figure A.5 shows the format of the cycle counter registead®ey the cycle counter
register gives the number of instruction cycles (countiothlexecuted instructions and
stalls) that have elapsed since some arbitrary initial tpditdriting the cycle counter
register has no effect.
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cycle count

Figure A.5: Cycle counter register format

1 undefined
Il Il Il Il Il Il Il Il Il Il

count first 3

! TN TN TN TN N T AT Y TN TR TN SN A T |
18 17 16 10 9 32 0

Inval

I
3130

Inval 1 =invalidate, O = clean
count one less than the number of consecutive cache lines to moces
first the number of the first cache line to process

Figure A.6: Data cache controller address queue write \faluneat

A.6.3 Data cache controller

Coprocessor 3 is the data cache controller. This coprocéssmusual in that it is
accessed using an address queue write with no words writtémeowrite queue.

Figure A.6 shows the format of the data cache controlleresfdqueue write value.
Note that bit 31 must be 1 to select coprocessor space anovitatier three bits must
contain 3 to select the data cache controller. Note thathifeesresult that the CPU
has to generate in order to create such an address queuedeglerds on the data
segment’s address rotation.

A.6.4 Inter-core message controller

Coprocessor 4 is the inter-core message controller. Thisocessor is unusual in that
the number of words written to the write queue (when sendimgssage) or read from
the read queue (when receiving a message) depends on tlentsoot the message
header.

Messages consist of a header and 0 to 63 words of payload.tihaiteero words
of payload is permitted, but it is interpreted as a controbsage by the receiving
core’s message controller and will not be enqueued on thesagesqueue for soft-
ware reception. Control messages are described in thesdiscuof the debug unit in
Appendix A.5.1.

To send a message, you first write the payload words to the gui¢ue. Then you
write the header as an address queue write value whose farstadwn in Figure A.7.
Note that bit 31 must be 1 to select coprocessor space anovitadier three bits must
contain 4 to select the message controller. Note that tHfeeshéesult that the CPU
has to generate in order to create such an address queuedeglerds on the data
segment’s address rotation.

To receive a message, you must poll by writing a receive retga® an address
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type the software message type, uninterpreted by hardware
length the number of words in the message payload
dstCore the destination core for the message

Figure A.7: Message controller address queue write valiedbto send a message

1 undefined 4
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Figure A.8: Message controller address queue read valoetdo poll for a message

gueue read value whose format is shown in Figure A.8. Notelié&1 must be 1
to select coprocessor space and the low order three bitsaoo#tin 4 to select the
message controller. Note that the shifter result that the 645 to generate in order to
create such an address queue value depends on the data segduness rotation.

Then you read a status word from the read queue. The formaedftatus word
is shown in Figure A.9. If the status word is zero, there is ressage to be received
at this time. Otherwise, the source core number will be neno,zhe message payload
length will be non-zero, and the message payload words hese éhqueued onto the
read queue immediately after the status word. You must teag@ayload words from
the read queue.

Note that the hardware provides a receive message queuehat@a but no flow-
control. The receive message queue is 1024 words long, witdrge enough to
hold a maximum length message (1 header word + 63 payloads)vivaain each core.
Results are undefinatla receive message queue overflows. Software must enforce a
flow-control discipline so that this does not happen.

A.6.5 Lock controller

Coprocessor 5 is the lock controller. This coprocessor issual in that no words are
written to the write queue when loading an address queue taritelease a lock.

A lock is conditionally acquired by writing an address queegd value and a lock
is released by writing an address queue write value. In bates; the address queue
value has the same format, which is shown in Figure A.10. Nudébit 31 must be
1 to select coprocessor space and the low order three bitsaomigin 5 to select the
lock controller. Note that the shifter result that the CPW k@ generate in order to
create such an address queue value depends on the data segduness rotation.

When you write an address queue read value to conditionedjyiee a lock, the
lock controller enqueues a word onto the read queue thatates the result of the
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undefined
1 1 1 1 1 1 1 1 1 1 1 1 1

srcCore
L L

! !
14 13

srcCore the core number that sent the message
type the software message type, uninterpreted by hardware
length the number of words in the message payload

10 9

Figure A.9: Message controller status word format

1 undefined
Il Il Il Il Il Il Il Il Il Il Il

lock number
Il Il Il

9

8

3 2

Figure A.10: Lock controller address queue value format

attempt. The value is zero to indicate a failed attempt, amatzero to indicate a
successful attempt. Attempting to acquire a lock which ybeaaly hold is always

successful.

When you write an address queue write value to release a fatkhe core cur-
rently holds, the lock is released. There is no effect if theeaoes not hold the lock.

In any event, no words are removed from the write queue.

A.7 Instruction fetch

Instructions are fetched as follows. The content of the potated right by the code
segment’s address rotation and the result is used as theaddrdss of the instruction

to fetch. Instructions cannot be fetched from coprocegsaces.
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Appendix B

Object file format

For convenience in software tool development, object filesrapresented as XML
format text files. A relocatable object file consists of ewbject> element. An
archive file consists of akarchive> element. An executable object file is identical
in format to a relocatable object file, except that it is preed that no unbound external
symbol references remain and that the global symbol “ma@mefined to specify the
program entry point.

Next we describe the elements in the document model in maad.de

B.1 Archive element

The<archive> element represents an archive of relocatable object filesntains
anumber okobject> subelements each of which represents a relocatable oltgect fi

B.2 Object element

The <object> element represents a relocatable object file. It containemaber
of <segment> , <local> , <globl> , <extrn> , and<comm>subelements. Each
segment subelement represents a segment within the r@ibeabject file.

The local, globl, extrn, and comm subelements relate to sygnhithin the relo-
catable object file. Each local subelement represents adgo®ol defined within the
object file. Local symbols are not used for binding exteriyahisol references and
need not be unique. Each globl subelement represents d giobbol defined withing
the object file. Each extrn subelement represents an exsmmédool reference. Each
comm subelement represents a global common request.

The<object> element has the following attributes:

file Name of the assembler source file that generated this raldeatbject file.
coderota Address rotation for the code segment (in hex).

datarota Address rotation for the data segment (in hex).
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B.3 Segment element

The <segment> element represents a relocatable memory segment. It osrdai
sequence ofw> (word), <z> (zero),<p> (patch), andcp> (choice patch), subele-
ments that specify the memory contents and relocation patehthe segment.

The word and zero subelements must be processed in seqUérceord subele-
ment specifies the absolute value of the next word in the segbe zero subelement
specifies that the next several words in the segment havesatuabd value of zero. If
the segment ends with a number of zero words, there need @adtrisd zero element to
specify them, since thisize segment attribute tells how many words are contained
in the segment.

Once the absolute values of all words in the segment have tetnmined by
the word and zero elements, the patch elements can be peddesapply relocation
patches. Each patch element specifies the relative word wvitkin the segment to
which it applies. Multiple patches can be applied to the sameenory word. The
choice patch element is a generalization of the patch eleamehspecifies a number of
alternative patches to be attempted on a specified memox. wor

The<segment> element has the following attributes:

name Name of the segment.

kind Kind of the segment. There are only two possible kinds, “C@hel “data”.
ibase Base memory word index for the segment (in hex).

isize Length of the segment in words (in hex).

rota Address rotation of the segment (in hex).

alignbic Mask specifying which bits in the base memory word index nestero for
proper alignment of this segment (in hex).

B.4 Word element

The<w> element represents a memory word in a segment. It contaieslm@lements
and has the following attributes:

v Absolute value of the word (in hex).

B.5 Zero element

The <z> element represents a sequence of zero words in a segmermmntatircs no
subelements and has the following attributes:

¢ Number of zero words (in hex).
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B.6 Patch element

The<p> element representspatchin a segment. A patch specifies a value
((ref +off ) &~ bic) ROL rol

that is computed and then OR’ed into a specified word withendbgment. Theef
is either a global symbol reference or the base address ofraese in the current
relocatable object file. A global symbol reference can bevalglymbol defined within
the current object file or an extrn symbol requested by theeatinbject file.

The<p> element contains no subelements and has the followingatitis:

i Relative word index within the segment to which this patcplias.

sym Name of a global symbol. Excludes the seg attribute.

seg Name of a segment within this relocatable object file. Exebithe sym attribute.
off Offset from the global symbol or segment base (in hex). Thaudeis “0”.

bic Mask of bits to clear after computing the relocated offset@&x). The default is
“0”.

rol Number of bit positions to rotate left after masking (in heke default is “0”.

B.7 Expression patch element

The<ep> element represents axpression patcn a segment. An expression patch
specifies a word index within the segment that is to be pateheda number of sym-
bolic expression patch alternatives. Each alternativee¢ther succeed or fail. The first
successful alternative specifies a value that is OR’ed imspecified word within the
segment. It is an error if none of the alternatives are ssfaksEach alternative is
represented by a expression subelement contained withie> element.

The<ep> element has the following attributes:

i Relative word index (in hex) within the segment to which ttti®ice patch applies.

msg Commentary to be included in the error message if none of ltbenatives are
successful. The default is the empty string.

There are four types of expression elemenial> , <refsym> | <refseg> , and
<bin> . The first three types are leaves and the last type represéiniary operation.
The<val> expression element specifies an absolute value. It has wifeitg:

v Absolute value (in hex).

The<refsym> expression element specifies a reference to a global symbalk
one attribute:

name The name of the symbol.

46



The<refseg> expression element specifies a reference to a segment. tivbas
attributes:

name The name of the segment.
off The offset (in hex) from the start of the segment. The defaullt

The<bin> expression element specifies a binary operation. It contaio subele-
ments and it has one attribute:

op The binary operation to be performed in the values of the twaresssion subele-
ments.

The possible operations are add, sub, ior (bitwise inckusiy, bic (bitwise clear), rol
(rotate left), and mbz (must be zero). The bic operation agegpthe bitwise and of
the first argument with the complement of the second of thersgargument. The mbz
operation checks that the bitwise and of the first and secondh@ents is zero, and if
so the result is the first argument. If not, the expressida.fai

B.8 Extrn element

The<extrn> element represents an external symbol reference withifoaatable
object file. It contains no subelements and has the followattgoutes:

name Name of a global symbol.

B.9 Globl element

The<globl> element represents a global symbol definition within a ralle ob-
ject file. A global symbol can be defined as (1) an absoluteeyqR) an offset from
another global symbol, or (3) an offset from the base of a seqimn the current object
file.

The<globl> element contains no subelements and has the followintatis:

name Name of the global symbol being defined.
sym Name of a global symbol. Excludes the seg attribute.
seg Name of a segment within this relocatable object file. Exe&ithe sym attribute.

off Offset from the global symbol or segment base (in hex). Ifhesisym nor seg
attribute appears, then “offet” is the absolute value ofdégnition. The default
IS “0”.
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B.10 Local element

The<local> elementrepresents a local symbol definition within a retalzie object

file. A local symbol can be defined as (1) an absolute valuerf2jffset from a global

symbol, or (3) an offset from the base of a segment in the ntioigject file.
The<local> element contains no subelements and has the followingais:

name Name of the local symbol being defined.
sym Name of a global symbol. Excludes the seg attribute.
seg Name of a segment within this relocatable object file. Exe&ithe sym attribute.

off Offset from the global symbol or segment base (in hex). Ifhegisym nor seg
attribute appears, then “offet” is the absolute value ofdégnition. The default
is “0".

B.11 Comm element

The<comm>element represents a global common request within a relbleadbject
file. It gives the name of a global symbol which is requesteloiealefined as the base
address of a common area of a specified minimum size, allbéate segment of a
specified kind with a specified address rotation. If this sghidbnot otherwise defined,
then the loader is requested to create such a common areafimel tthe symbol as its
base address. Multiple global common requests of the sameayame can be com-
bined by taking the maximum of the sizes and combining thgnatient requirements.
The<comm>element contains no subelements and has the followindpatibs:

name Name of the common area being requested.
kind Kind of segment in which the requested common area shoultduated.
isize Size of the requested common area in words (in hex).

rota Address rotation of the segment in which the requested camarea should be
allocated (in hex).

alignbic Alignment requirement of the requested common area, egpdess a mask
of the word index bits that must be zero (in hex).
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Appendix C

Software conventions

Here we describe the software conventions used by comfiletise Beehive architec-
ture.

C.1 Register usage

The Beehive CPU has 32 general purpose registers, althodglv af the higher-
numbered registers are overloaded in the instruction tewtoire and are therefore not
as “general purpose” as the others. Furthermore, in vegsairthe CPU register O is a
fixed zero register. Table C.1 summarizes the Apiary registage conventions. The
columns are described in more detail as follows.

Name. This column gives the name of the register as used in comgdperated as-
sembly code.

Beehive overload.A few of the higher-numbered registers have overloaded mgan
when used as Ra or Rw in a Beehive instruction. This columeries the
overloaded meaning, if any.

Apiary purpose. This column gives the purpose of the register as used duxiecue
tion of compiler-generated code.

Fixed zero. The register is fixed at the value zero.

General. The register can be used for any purpose, such as storinglakrg-
able or a compiler-generated temporary.

Frame pointer. The register is used to store the frame pointer. If the ctirren
subroutine does not use a frame pointer, this is the sameeseaa] regis-
ter.

Temporary. The register is used in a canned instruction sequence tbam#sd-
ered as a single instruction by the compiler. For exampeegtit compiler
assumes that any primitive data type can be transferreccleata general
register and memory without requiring an additional tenappregister to
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Beehive Apiary return parameter callee

reg name overload purpose value passing save
0 zero no fixed zero n/a
1 rl no general 1st word no
2 r2 no general 2nd word no
3 r3 no general 1st word no
4 r4 no general 2nd word no
5 r5 no general 3rd word no
6 ré no general 4th word no
7 r7 no general 5th word no
8 r8 no general 6th word no
9 ro no general yes
10 rlo no general yes
11 11 no general yes
12 rl2 no general yes
13  rl3 no general yes
14 rl4 no general yes
15 rl5 no general yes
16 rl6 no general yes
17 rl7 no general yes
18 rl8 no general yes
19 rl19 no general yes
20 r20 no general yes
21 r21 no general yes
22 r22 no general yes
23 fp no frame pointer yes
24 t1 no temporary no
25 t2 no temporary no
26 t3 no temporary no
27 pl no platform no
28 sp no stack pointer yes
29 vb Ra=RQ void bval no
30 r30 Ra,Rw=LINK none no
31 r31 Ra=PC, Rw=WQ none no

Table C.1: Apiary register conventions

be allocated. This assumption comes into play when the denmipas to
spill registers because it has run out. Unfortunately, teetve has no
instructions to load or store bytes. The only way to accoshgli requires
a sequence of instructions using several temporary registis is what
the “temporary” registers are for. Since temporary regiséee never used
otherwise by compiler-generated code, they are also fesglijable for use
by assembly-language support routines.
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Platform. The register is reserved for use by the platform, such agxample,
as a pointer to the thread control block. Patform registegsat used by
the compiler nor by any of the compiler runtime support noesi.

Stack pointer. The register is used as the stack pointer.

Void bval. This register has two uses. First, some instructions ardatepist
for their effects on the condition codes or on the addressigbet these
instructions nonetheless must specify a destinationtexgishe void bval
register is used for this purpose. Second, the void bvastegis used as
part of a canned instruction sequence to construct a valiehvidrsubse-
quently used as the Rb argument of an instruction.

None. The register has no purpose.

Return value. The return value registers are used in passing the retuae ¥edm a
subroutine to its caller. Different things happen depegdin whether the return
value is a primitive type or pointer, or a struct, as discdssesection C.3.1.

Parameter passing.A number of registers are available for passing parameteas t
subroutine. There is considerable complexity here, sinogesparameters may
be passed in registers and some on the stack, as discussattion$C.3.4.

Callee save.Some registers are preserved across a subroutine cale titlee has a
reason to use the register, it can save and then later rélseoregister’'s contents.
Other registers need not be preserved across a subrouliine ca

C.2 Memory layout

The Beehive architecture has a rather unusual memory layblné memory space
consists 0232 words of 32 bits each. These words are indexed by word numbers
0...232 1.

Memory space is divided into a top half and a bottom half. To#dm half of
the memory space is occupied by physical memory. Hence tier2?! words or
8 gigabytes of physical memory. The top half of memory spaceccupied by I/O
devices. The Beehive hardware manual should be consulteghito about the 1/0
devices.

Instruction references use word numbers. This is reflectétlé contents of the
program counter, jump calculations, and subroutine reqgidresses. Hence the pro-
gram counter can address any word in physical memory. Itnsidered improper for
the program counter to address 1/O space.

Data references, on the other hand, are different. In théiBearchitecture, data
memory access is accomplished via queues that transfexssidrand data between the
Beehive CPU and the memory controller. When a Beehive CPtouiction specifies
thatthe ALU result is to be enqueued onto the address quetrafsfer to the memory
controller, the value that actually gets enqueued is the A¢dullt rotated right by two
bit positions. The memory controller then treats the vatugets from the address
queue as a word number.
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What this means is that for the bottd®*’ words of memory space, the Beehive
CPU addresses data words as if it were using byte addreskesadiresses are pre-
cisely those values in the ranf. .. 232 — 1] that are zero mod four. Note that the
Beehive memory system has no concept of byte access or agnedlword access.
The Beehive memory system fetches and stores words regatdncword number,
with the funny tweak that the word number is determined bgatiog the CPU data
address right by two bit positions. Still, it looks to soft@as if the memory system
uses byte addressing.

Byte addressing is important to Apiary because GCC and M&iletan unbreak-
able assumption that their target architecture is a byteemddd machine. So, Apiary
uses the bottor2?® words of memory space for data and pretends that it has such a
machine.

Most data types occupy some multiple of words. Apiary is ftar® allocate in-
stances of these data types on word boundaries. Apiary thieeaddress directly to
the Beehive memory system when such values are fetched @md st-or a one-byte
data type, Apiary assumes that the address might refer tbygry Fetching or storing
such a value requires an instruction sequence to accessl¢vamt memory word and
insert or extract the byte. A two-byte data type is similagept that Apiary assumes
that the address is aligned on a two-byte boundary. Tabled€s2ribes the Apiary
implementation of primitive C types.

Even though Apiary uses only the botta¥ words of memory space for data,
software can still access the entire memory space using @ignad address that has
been cast into a pointertot . You had better know exactly what you are doing if you
do this.

Since Apiary uses only the botto?2i® words of memory space for data, the next
230 words of physical memory can be used for instructions, &ffely giving an ar-
chitecture with split I/D space. Neither GCC nor MSIL have @noblem with using
word numbers to reference instructions.

C.3 C subroutine linkage

This section describes the Apiary subroutine linkage cotioa for C. We assume that
all subroutines have a prototype in scope. All parametersEbfor arrays are passed
by value. Recall that in C an array is actually passed as dgrdmits first element.

C.3.1 Return value

A subroutine that returns a primitive type or pointer usesréturn value registers to
pass the return value back to the caller. Primitive typesoaeeor two words long.
Short integers and characters are coerced to an integeelsdng returned, so these
cases never come up.

A subroutine declared as returning a struct actually woskiolows. The caller
allocates space for the return value and passes its addadbg Vreturn value” register
rl. Regardless of the declaration of the struct, the alemtapace starts on a word
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char An unsigned integer type that occupies one byte. Coerced towhen passed
as a parameter or as a return value. When allocated as aleadabumed to be
aligned on a word boundary. When allocated in a struct or vdeeaferencing a
pointer, the address is assumed to have any alignment.

signed char  Same aghar except signed.

short A signed integer type that occupies two bytes. Coerceadtto when passed
as a parameter or as a return value. When allocated as aleadabumed to be
aligned on a word boundary. When allocated in a struct or vadegaferencing a
pointer, the address is assumed to be aligned on a two-bytedaoy.

unsigned short Same ashort except unsigned.

int A signed integer type that occupies one word. When allocated variable,
assumed to be aligned on a word boundary. When allocatedtina sr when
dereferencing a pointer, the address is assumed to be @bgreeword boundary.

unsigned int Same ant except unsigned.
long Identical toint
unsigned long  Same asong except unsigned.

long long A signed integer type that occupies two words, least sigmtievord
first. Same alignment assumptiongats .

unsigned long long Same asong long except unsigned.

float A floating point type that occupies one word. Same alignmssiiaptions as
int . Operations not yet implemented.

double A floating point type that occupies two words. Same alignnasstimptions
asint . Operations not yet implemented.

Table C.2: Apiary implementation of primitive C types.

boundary and contains an integral number of words. The stibestores its return
value in the indicated space and returns the address inttima raalue register rl.

C.3.2 Layout of the parameter block

The parameters of a subroutine call are mapped conseguintd a region of storage
called the parameter block. Figure C.1 shows an examplestibe prototype and

its corresponding parameter block. The tyfteuctdwd is assumed to be a struct
that occupies four words. The relative address of each wotle parameter block is
indicated on the left. Note that addresses decrease frorotbpttom, as consistent
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int subr (
int a,
int * p,
long long c,
Structdwd Q)

28:

24

20: Structdwd q
16:

12:

g long long ¢
4: int*p

0: inta

Figure C.1: Example C subroutine prototype and its paraniések.

with a stack that grows downward.

C.3.3 Integral number of words

As each parameter is mapped to the parameter block, it isnebgolif necessary to
an integral number of words. Parameters of primitive intégpe, such ashar and
short , that are shorter than a word are extended to a full word. Ktension is
signed or unsigned depending on whether the primitive tyg@ined or unsigned. The
only other kind of type that would have to be extended is acstin this case, padding
bytes of undefined content are added to the end as necessaagtoa word boundary.

C.3.4 Passing the parameter block

For efficiency, all or some initial part of the parameter lilatay be passed in registers.
The considerations are somewhat complex. The initial gahteoparameter block that
is passed in registers is called tlegister partand the remaining part that is passed on
the stack is called thstack part

First, the C language supports subroutines that have abl@nmmber of argu-
ments. Such a subroutine is calledaargs subroutineand the list of parameters in
its prototype ends with three dots, which specifies that airary number of addi-
tional, anonymous parameters may be passed. For a vardngaisoe, none of the
parameters may be passed in registers. The entire parabohet&ris passed on the
stack.

Otherwise, some leading parameters in the parameter blagkom passed in reg-
isters. The decision proceeds parameter by parameter. Bfiena parameter is en-
countered for which the decision is made not pass it in registhat parameter and all
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996:
ggg Struct4dwd q
984: 'sp
reg contents

LINK return address
sp 984
ré 2nd word of long long ¢
r5 1st word of long long ¢
r4 int*p
r3 inta

Figure C.2: Stack and register contents on entry to the suibmof Figure C.1.

following parameters are passed on the stack.

The decision for a given parameter proceeds as follows.t, Firthe parameter
occupies more than two words, it cannot be passed in regissecond, if the parameter
occupies more words than remain parameter passing regatailable to hold it, it
cannot be passed in registers.

In the case of a two-word parameter being passed in regiiterower numbered
register gets the first word of the parameter.

The stack part of the parameter block is always aligned onrd Wwoundary. Since
the Beehive CPU does not support unaligned word accessultiio@ terminally fool-
ish to do otherwise.

C.3.5 Calling the subroutine

Once it is determined how the parameter block divides integéster part and a stack
part, the calling program arranges the register part intarpater registers, arranges
the stack part onto the stack, and then jumps to the entryt pbthe subroutine.

On entry to the subroutine, the stack pointer (sp) contdiasatdress of the first
word in the stack part of the parameter block. Figure C.&filtes the situation for
the subroutine of Figure C.1. Note that the parameter mgistre r3 through r8, but r7
and r8 have not been used because the next parameter is fals g, which is both
longer than two words and also too long to fit in the remainiagameter registers.

C.3.6 Subroutine entry

GCC compiler subroutines obey the following conventionselroutine entry.

First, the return address is in the LINK register, where guject to being clob-
berred by any CALL or LLI instruction. So the first thing to d® push it onto the
stack.
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996:

992:

988 Structdwd q
984:

980: return address

976: | callee save registe
972: | callee save registe
968: | callee save register :sp

=

=

reg contents

sp 968

r6  2nd word of long long ¢
r5 1stword of long long ¢
rd int*p

r3 inta

Figure C.3: Stack and register contents after entry to tieosuine of Figure C.1.
Three callee save registers are assumed.

Second, any callee save registers that are modified insdguthroutine are pushed
onto the stack. Registers are pushed in reverse numerael. or

Figure C.3 shows the stack and register contents aftertdmslard entry sequence
has been performed for the method of Figure C.1. This ilii&tn assumes that there
are three callee save registers that need to be saved.

C.3.7 Subroutine return

When a subroutine prepares to return, it first arranges itsrevalue, if any. If the
return value is a primitive type or pointer, the return vakikeft in the return registers.
In this case, the return value type is extended to an integraber of words just like
in the case of parameters, as discussed in Section C.3.3.

Otherwise, the return value is a struct. In this case, a potota location in which
to store the return value has been passed in the “return"vagester. The subroutine
copies its return value to this location. The address idgnetfie return value register.

The struct return value location is always aligned on a wardrlary. Since the
Beehive CPU does not support unaligned word access, it waitérminally foolish
to do otherwise.

Any callee save registers that were modified by the subreutinst be restored to
the values they had on entry. This includes the stack poamgframe pointer. Finally,
the subroutine jumps to the return address.
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C.4 Instruction schemas

Generally, the Beehive is a RISC architecture in which easlriction specifies two
source registers, computes an ALU function, and storesethdtrin a destination reg-
ister. This can be summarized by the instruction schema:

Rw = ALU(Ra, Rb)

In addition, the source registétb in a Beehive instruction can be replaced with a
constant. This is summarized by the instruction schema:

Rw = ALU(Ra, CONST)

Although a Beehive instruction supports only a limited raf constants, an arbitrary
constant can be constructed and left in a register using tejpgpatory instructions. In
fact, due to register overloading, there are two generastexg that can be specified
for Rw and Rb that are not available foRa, and using one of these is ideal for the
construction of arbitrary constants in this manner. So &itrary CONST operand
can be effectuated, if necessary, via a prefix instructiqqueece. For simplicity the
following discussion omits details regarding constants.

In the Beehive architecture, memory access is accomplighepieues that transfer
addresses and data between the Beehive CPU and the memtnglleanThere are
three queues. Thaddress queugransfers addresses from the CPU to the memory
controller. Theread queudransfers fetched data words from the memory controller to
the CPU. Thewrite queudransfers data words to store from the CPU to the memory
controller.

The use of these queues can be considered an extension tadiceirstruction
schema, as discussed next.

C.4.1 Fetching from memory

Fetching a word from memory requires two CPU instructionise Tirst CPU instruc-
tion computes the address and enqueues it onto the addmress.gin effect, this in-
struction emulates some of the addressing modes that amd folCISC architectures.
The instruction can compute the sum or difference of a saegister and a small con-
stant, thus emulating an offset addressing mode. The tigirucan compute the sum
or difference of two registers, thus emulating an indexiddrassing mode. Since the
instruction must specify a destination register to rec#diecALU result, preincrement
and predecrement addressing modes can also be emulatetierfmore, by adding
prefix instructions to the address generation instructidimer addressing modes such
as absolute addressing and arbitrary offset addressingecamulated.

The memory controller dequeues the address, fetches thevdatl—flushing and
loading a cache line if necessary—and enqueues the dataomtodhe read queue.
The second CPU instruction then dequeues this word fromehé queue using an
overloaded source registéla specification. Synchronization between the CPU and
the memory controller is accomplished by having the CPUriinsion stall if necessary
until the read queue is non-empty.
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Since the second CPU instruction can specify any threestergdperation, we can
think of the Beehive architecture as supporting the insimaschema:

Rw = ALU(FETCH, Rb)

The FETCH operand is effectuated via a prefix instruction sequendecih@putes
the address and enqueues it onto the address queue.

C.4.2 Storing into memory

Storing a word into memory also requires two CPU instruciddne instruction com-
putes an address and enqueues it onto the address queuernnereactly analogous
to that for a memory fetch. Another instruction computesdhta word to store and
engueues it onto the write queue.

When both the address queue and the write queue are non;éhngxtyemory con-
troller dequeues the address and data word and performtieeftushing and loading
a cache line if necessary. The Beehive architecture peth@tsvo instructions—one
which enqueues the address and one which enqueues the dappetar in either or-
der.

At present, Apiary software adopts the convention of enmgethe address first
and then enqueuing the data to store. This convention hasa@dvantages. First, it
is conceptually simpler, since storing and fetching rederabch other in that in both
cases the address is computed via prefix instructions. 8Seddahe condition codes
need to be examined for the data that is stored, they areabl@it the conclusion of
the instruction sequence. Third, for an instruction thafgrens both fetch and store,
the computation of the store address is hidden by the fetehds.

A CPU instruction enqueues a data word onto the write queiregy e over-
loaded destination register specification. Since thiguesion can specify any three-
register operation, we can think of the Beehive architecag supporting the instruc-
tion schema:

STORE = ALU(Ra, Rb)

The STORE operand is effectuated via a prefix instruction sequendetmputes the
address and enqueues it onto the address queue.

C.4.3 General schema

Since both read queue overloading and write queue overligadin be specified in the
same Beehive CPU instruction, we can think of the Beehivkitecture as supporting
the instruction schema:

STORE = ALU(FETCH , Rb)

The FETCH prefix must preceed th8T'ORE prefix or else the final instruction will
deadlock.

Recall that the source regist&b in a Beehive instruction can be replaced with a
constant, giving us the the general instruction schema:

STORE = ALU(FETCH, CONST)
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*(int  *)0x01001200 = =*(int  *)0x01004700 ~ Oxfeedface;

agr_long_Id vb,0x01004700 /I fetch prefix
agw_long Id vb,0x01001200 /I store prefix
long_Id vb,0xfeedface /I const prefix
xor wq,rq,vb

Figure C.4: Example C code and generated assembly codeefgetieral schema.

Furthermore, recall that an arbitraB3ONST operand may have to be effectuated via a
prefix instruction sequence. To implement the general seh#dm compiler first emits
the FETCH prefix, then theSTORE prefix, then theCONST prefix, and finally the
Beehive instruction.

Figure C.4 shows an example of C code and generated asseou&yar the gen-
eral schema. The fetch prefix constructs the memory fetcteaddia a two instruction
sequence using the link register. The fetch address is elegumto the address queue.
Since the address is not needed otherwise, the destinatiister is specified ag .
The store prefix constructs the memory store address viaisiwo instruction se-
quence. The const prefix constructs the arbitrary cons&inga similar two instruc-
tion sequence, this time leaving the constant inuheregister where it can be used
by the final instruction. Then, the final instruction dequetie fetched word from the
read queue, computes the ALU operation with the constadteaqueues the result in
the write queue.

Although this general schema was originally employed inBeehive GCC com-
piler, I noticed that the const prefix did not help with codesligy. In any case in which
the const prefix would be needed, it would take the same nuafhbestructions to re-
quire the compiler to allocate a register and assemble thstaot into that register,
assuming available registers. Furthermore, forcing thepiler to load the constant
into a register exposes the constant to common subexpnedgitination. So now the
GCC compiler does not use the const prefix.
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