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Introduction

e Goal: cost-effective high-perf computing
distributed systems
ease of programming

e Message passing
portable, efficient, but hard to program

e DSM Iimproves programmability



Distributed Shared Memory (DSM)

e Goal: DSM with portability, efficiency

e [ension between HW and SW
performance vs. implementation effort



C Region Library (CRL)

e Shared memory model
e Portable

e Efficient

e Controlled comparison with HW DSM

= CRL performance within 15%
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Communicate through regions
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e Contiguous area of memory

e Application defined, variable size
e Named by region identifiers

e Can be created dynamically
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Mapping/unmapping

e Before accessing, regions must be mapped

e After accessing, they can be unmapped



Group accesses Iinto operations

e Annotate program to delimit operations

e Read & write operations

e Integrate data access and synchronization




Programming model summary

Modest differences from ‘standard’ DSM

e Annotations delimiting operations

e ‘Global’ vs. ‘local’ pointers

Our experience: low programmer overhead



Prototype implementation

e Regions are cached

e Fixed-home, invalidate-based protocol
e Handles out-of-order message delivery
e Implemented entirely as a library

e Runs on three platforms
(CM-5, Alewife, TCP/Unix)



Thinking Machines CM-5
128 nodes

round-trip: 1088 cycles
bandwidth: 0.25 bytes/cycle

comparable to NOW

MIT Alewife Machine

32 nodes

round-trip: 528 cycles
bandwidth: 0.9 bytes/cycle

supports both SM and MP
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Applications

Region Cycles/
Application | size (bytes) | number | CRL op
Blocked LU 300 2,500 11,000
Water 672 500 1,540
Barnes-Hut 100 16,000 436

e Direct port of original shared memory code
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CRL vs. Hardware DSM

Can CRL deliver performance competitive
with hardware DSM?

e Controlled comparison using Alewife
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Water (medium grained)
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Barnes-Hut (fine grained)
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CRL on distributed systems

What about impact of increased
communication costs on CRL?7

e Compare CRL on Alewife and CM-5
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CM-5 CRL vs. Alewife CRL
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Larger problem and machine sizes
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wWhy does CRL do well?

e Simple, efficient implementation

e Overhead amortized over many references

e NO problems from fixed-size coherence units
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Conclusions & contributions

e CRL (simple, portable, efficient, scalable)

e First controlled comparison of scalable
hardware and software DSM systems

e CRL delivers competitive performance!

e Hardware support not necessary
reduced implementation effort
increased flexibility

19



