CRL: High-Performance All-Software Distributed Shared Memory

Kirk L. Johnson University of Colorado, Boulder

M. Frans Kaashoek, Deborah A. Wallach Massachusetts Institute of Technology

Introduction

- Goal: cost-effective high-perf computing distributed systems ease of programming
- Message passing portable, efficient, but hard to program
- DSM improves programmability

Distributed Shared Memory (DSM)

Goal: DSM with portability, efficiency

 Tension between HW and SW performance vs. implementation effort

C Region Library (CRL)

- Shared memory model
- Portable
- Efficient

- Controlled comparison with HW DSM
- \Rightarrow CRL performance within 15%

Outline

- Introduction
- The CRL approach
- Framework and methodology
- CRL vs. hardware DSM
- CRL on distributed systems
- Conclusions

Communicate through regions

- Contiguous area of memory
- Application defined, variable size
- Named by region identifiers
- Can be created dynamically

Mapping/unmapping

- Before accessing, regions must be mapped
- After accessing, they can be unmapped

Group accesses into operations

- Annotate program to delimit operations
- Read & write operations
- Integrate data access and synchronization

Programming model summary

Modest differences from 'standard' DSM

- Annotations delimiting operations
- 'Global' vs. 'local' pointers

Our experience: low programmer overhead

Prototype implementation

- Regions are cached
- Fixed-home, invalidate-based protocol
- Handles out-of-order message delivery
- Implemented entirely as a library
- Runs on three platforms
 (CM-5, Alewife, TCP/Unix)

Thinking Machines CM-5

128 nodes

round-trip: 1088 cycles

bandwidth: 0.25 bytes/cycle

MIT Alewife Machine

32 nodes

round-trip: 528 cycles

bandwidth: 0.9 bytes/cycle

supports both SM and MP

Applications

	Region		Cycles/
Application	size (bytes)	number	CRL op
Blocked LU	800	2,500	11,000
Water	672	500	1,540
Barnes-Hut	100	16,000	436

• Direct port of original shared memory code

CRL vs. Hardware DSM

Can CRL deliver performance competitive with hardware DSM?

Controlled comparison using Alewife

Water (medium grained)

Water (512 molecules)

Barnes-Hut (fine grained)

Barnes-Hut (4,096 bodies)

CRL on distributed systems

What about impact of increased communication costs on CRL?

Compare CRL on Alewife and CM-5

CM-5 CRL vs. Alewife CRL

Water (512 molecules)

Barnes-Hut (4,096 bodies)

Larger problem and machine sizes

Barnes-Hut (4,096 and 16,384 bodies)

Why does CRL do well?

- Simple, efficient implementation
- Overhead amortized over many references
- No problems from fixed-size coherence units

Conclusions & contributions

- CRL (simple, portable, efficient, scalable)
- First controlled comparison of scalable hardware and software DSM systems
- CRL delivers competitive performance!
- Hardware support not necessary reduced implementation effort increased flexibility