CRL: High-Performance All-Software
Distributed Shared Memory

Kirk L. Johnson
University of Colorado, Boulder

M. Frans Kaashoek, Deborah A. Wallach
Massachusetts Institute of Technology

Introduction

e Goal: cost-effective high-perf computing
distributed systems
ease of programming

e Message passing
portable, efficient, but hard to program

e DSM Iimproves programmability

Distributed Shared Memory (DSM)

e Goal: DSM with portability, efficiency

e [ension between HW and SW
performance vs. implementation effort

C Region Library (CRL)

e Shared memory model
e Portable

e Efficient

e Controlled comparison with HW DSM

= CRL performance within 15%

Outline

e Introduction

e | he CRL approach

e Framework and methodology

e CRL vs. hardware DSM

e CRL on distributed systems

e Conclusions

Communicate through regions

S N N BN B S S SN S S S S B S SN S S S SN S SN S S S S S S S S B B S S

y \

N

e Contiguous area of memory

e Application defined, variable size
e Named by region identifiers

e Can be created dynamically

\———'/

/

Mapping/unmapping

e Before accessing, regions must be mapped

e After accessing, they can be unmapped

Group accesses Iinto operations

e Annotate program to delimit operations

e Read & write operations

e Integrate data access and synchronization

Programming model summary

Modest differences from ‘standard’ DSM

e Annotations delimiting operations

e ‘Global’ vs. ‘local’ pointers

Our experience: low programmer overhead

Prototype implementation

e Regions are cached

e Fixed-home, invalidate-based protocol
e Handles out-of-order message delivery
e Implemented entirely as a library

e Runs on three platforms
(CM-5, Alewife, TCP/Unix)

Thinking Machines CM-5
128 nodes

round-trip: 1088 cycles
bandwidth: 0.25 bytes/cycle

comparable to NOW

MIT Alewife Machine

32 nodes

round-trip: 528 cycles
bandwidth: 0.9 bytes/cycle

supports both SM and MP

10

Applications

Region Cycles/
Application | size (bytes) | number | CRL op
Blocked LU 300 2,500 11,000
Water 672 500 1,540
Barnes-Hut 100 16,000 436

e Direct port of original shared memory code

11

CRL vs. Hardware DSM

Can CRL deliver performance competitive
with hardware DSM?

e Controlled comparison using Alewife

12

Water (medium grained)

S 25 linear speedup.’
9 - Alewife (SM).- R
% 20F « Alewife (CRL) ’
15
10

0 8 16 24 32
number of processors

Water (512 molecules)

13

Barnes-Hut (fine grained)

linear speedup
-2 Alewife (SM)
-+ Alewife (CRL) .

0 8 16 24 32
number of processors

Barnes-Hut (4,096 bodies)

14

CRL on distributed systems

What about impact of increased
communication costs on CRL?7

e Compare CRL on Alewife and CM-5

15

CM-5 CRL vs. Alewife CRL

speedup

25

- - linear speedup.’

= Alewife (SM) - -
-« Alewife (CRL) g
CM-5 (CRL)

N
Q

0 8 16 24 32
number of processors

Water
(512 molecules)

-+ linear speedup
= Alewife (SM)

+ Alewife (CRL) .
CM-5 (CRL) ‘

10

0 8 16 24 32
number of processors

Barnes-Hut
(4,096 bodies)

16

Larger problem and machine sizes

o 30 - -+ linear speedup
§ o CM-5 (CRL, 16k)
o 25 e CM-5 (CRL, 4k)
N

0 32 64 96 128
number of processors

Barnes-Hut (4,096 and 16,384 bodies)

17

wWhy does CRL do well?

e Simple, efficient implementation

e Overhead amortized over many references

e NO problems from fixed-size coherence units

18

Conclusions & contributions

e CRL (simple, portable, efficient, scalable)

e First controlled comparison of scalable
hardware and software DSM systems

e CRL delivers competitive performance!

e Hardware support not necessary
reduced implementation effort
increased flexibility

19

